Do you want to publish a course? Click here

Pion-Nucleus Scattering at Medium Energies with Densities from Chiral Effective Field Theories

219   0   0.0 ( 0 )
 Added by Lisa Kurth Kerr
 Publication date 1998
  fields
and research's language is English




Ask ChatGPT about the research

Recently developed chiral effective field theory models provide excellent descriptions of the bulk characteristics of finite nuclei, but have not been tested with other observables. In this work, densities from both relativistic point-coupling models and mean-field meson models are used in the analysis of meson-nucleus scattering at medium energies. Elastic scattering observables for 790 MeV/$c$ $pi^{pm}$ on $^{208}$Pb are calculated in a relativistic impulse approximation, using the Kemmer-Duffin-Petiau formalism to calculate the $pi^{pm}$ nucleus optical potential.



rate research

Read More

We present a fully relativistic formalism for describing neutrino-induced $Delta$-mediated single-pion production from nuclei. We assess the ambiguities stemming from the $Delta$ interactions. Variations in the cross sections of over 10% are observed, depending on whether or not magnetic-dipole dominance is assumed to extract the vector form factors. These uncertainties have a direct impact on the accuracy with which the axial-vector form factors can be extracted. Different predictions for $C_5^A(Q^2)$ induce up to 40-50% effects on the $Delta$-production cross sections. To describe the nucleus, we turn to a relativistic plane-wave impulse approximation (RPWIA) using realistic bound-state wave functions derived in the Hartree approximation to the $sigma$-$omega$ Walecka model. For neutrino energies larger than 1 GeV, we show that a relativistic Fermi-gas model with appropriate binding-energy correction produces comparable results as the RPWIA which naturally includes Fermi motion, nuclear-binding effects and the Pauli exclusion principle. Including $Delta$ medium modifications yields a 20 to 25% reduction of the RPWIA cross section. The model presented in this work can be naturally extended to include the effect of final-state interactions in a relativistic and quantum-mechanical way. Guided by recent neutrino-oscillation experiments, such as MiniBooNE and K2K, and future efforts like MINER$ u$A, we present $Q^2$, $W$, and various semi-inclusive distributions, both for a free nucleon and carbon, oxygen and iron targets.
162 - B. C. Clark , S. Hama , 2002
A new method for extracting neutron densities from intermediate energy elastic proton-nucleus scattering observables uses a global Dirac phenomenological (DP) approach based on the Relativistic Impulse Approximation (RIA). Data sets for Ca40, Ca48 and Pb208 in the energy range from 500 MeV to 1040 MeV are considered. The global fits are successful in reproducing the data and in predicting data sets not included in the analysis. Using this global approach, energy independent neutron densities are obtained. The vector point proton density distribution is determined from the empirical charge density after unfolding the proton form factor. The other densities are parametrized. This work provides energy independent values for the RMS neutron radius, R_n and the neutron skin thickness, S_n, in contrast to the energy dependent values obtained by previous studies. In addition, the results presented in paper show that the expected rms neutron radius and skin thickness for Ca40 is accurately reproduced. The values of R_n and S_n obtained from the global fits that we consider to be the most reliable are given as follows: for Ca40 R_n is 3.314 > R_n > 3.310 fm and S_n is -0.063 > S_n > -0.067 fm; for Ca48 R_n is 3.459 > R_n > 3.413 fm and S_n is 0.102 > S_n > 0.056 fm; and for Pb208 R_n is 5.550 > R_n > 5.522 and S_n is 0.111 > S_n > 0.083 fm. These values are in reasonable agreement with nonrelativistic Skyrme Hartree-Fock models and with relativistic Hartree-Bogoliubov models with density-dependent meson-nucleon couplings. The results from the global fits for Ca48 and Pb208 are generally not in agreement with the usual relativistic mean-field models.
Hadronic interactions are crucial for the dynamical description of heavy-ion reactions at low collision energies and in the late dilute stages at high collision energies. In particular, the properties and decay channels of resonances are an essential ingredient of hadronic transport approaches. The HADES collaboration measured particle production in collisions of pions with carbon and tungsten nuclei at $E_text{kin} = 1.7,text{GeV}$. Such reactions are of high interest, because they allow to probe the properties of baryonic resonances produced in a much cleaner environment than the usual nucleus-nucleus collisions. We study these reactions with two transport approaches: SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) and UrQMD (Ultra relativistic Quantum Molecular Dynamics) which follow the same underlying concept but with different implementations. The differential spectra in rapidity and transverse momentum are used to show how model parameters, as the decay channels of high mass resonances and angular distributions of kaon elastic scattering, can be constrained. It is found that the data favor the production of more particles with lower momentum over the production of few particles with higher momentum in these decays. In addition, the shape of the rapidity distribution of the kaons strongly depends on the angular distribution of the elastic kaon-nucleon cross section.
Since the pioneering work of Weinberg, Chiral Effective Field Theory ($chi$EFT) has been widely and successfully utilized in nuclear physics to study many-nucleon interactions and associated electroweak currents. Nuclear $chi$EFT has now developed into an intense field of research and is applied to study light to medium mass nuclei. In this contribution, we focus on the development of electroweak currents from $chi$EFT and present applications to selected nuclear electroweak observables.
The interpretation of recent Jlab experimental data on the exclusive process A(e,ep)B off few-nucleon systems are analyzed in terms of realistic nuclear wave functions and Glauber multiple scattering theory, both in its original form and within a generalized eikonal approximation. The relevance of the exclusive process 4He(e,ep)^3H for possible investigations of QCD effects is illustrated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا