Do you want to publish a course? Click here

Electroweak Currents from Chiral Effective Field Theory

111   0   0.0 ( 0 )
 Added by Alessandro Baroni
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Since the pioneering work of Weinberg, Chiral Effective Field Theory ($chi$EFT) has been widely and successfully utilized in nuclear physics to study many-nucleon interactions and associated electroweak currents. Nuclear $chi$EFT has now developed into an intense field of research and is applied to study light to medium mass nuclei. In this contribution, we focus on the development of electroweak currents from $chi$EFT and present applications to selected nuclear electroweak observables.



rate research

Read More

Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory, and accounts for cancellations between the contributions of irreducible diagrams and the contributions due to non-static corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. A complete set of contact terms for the axial charge up to the relevant order in the power counting is constructed.
Recently, we have shown that the continuity equation for the nuclear vector and axial current operators acquires additional terms if the latter depend on the energy transfer. We analyze in detail the electromagnetic single-nucleon four-current operators and verify the validity of the modified continuity equation for all one- and two-nucleon contributions up to fourth order in the chiral expansion. We also derive, for the first time, the leading contribution to the three-nucleon charge operator which appears at this order. Our study completes the derivation of the electroweak nuclear currents to fourth order in the chiral expansion.
504 - P. Klos , J. Menendez , D. Gazit 2013
We perform state-of-the-art large-scale shell-model calculations of the structure factors for elastic spin-dependent WIMP scattering off 129,131Xe, 127I, 73Ge, 19F, 23Na, 27Al, and 29Si. This comprehensive survey covers the non-zero-spin nuclei relevant to direct dark matter detection. We include a pedagogical presentation of the formalism necessary to describe elastic and inelastic WIMP-nucleus scattering. The valence spaces and nuclear interactions employed have been previously used in nuclear structure calculations for these mass regions and yield a good spectroscopic description of these isotopes. We use spin-dependent WIMP-nucleus currents based on chiral effective field theory (EFT) at the one-body level and including the leading long-range two-body currents due to pion exchange, which are predicted in chiral EFT. Results for all structure factors are provided with theoretical error bands due to the nuclear uncertainties of WIMP currents in nuclei.
The density and temperature dependence of the nuclear symmetry free energy is investigated using microscopic two- and three-body nuclear potentials constructed from chiral effective field theory. The nuclear force models and many-body methods are benchmarked to properties of isospin-symmetric nuclear matter in the vicinity of the saturation density as well as the virial expansion of the neutron matter equation of state at low fugacities. The free energy per particle of isospin-asymmetric nuclear matter is calculated assuming a quadratic dependence of the interaction contributions on the isospin asymmetry. The spinodal instability at subnuclear densities is examined in detail.
We compute the isospin-asymmetry dependence of microscopic optical model potentials from realistic chiral two- and three-body interactions over a range of resolution scales $Lambda simeq 400-500$,MeV. We show that at moderate projectile energies, $E_{rm inv} = 110 - 200$,MeV, the real isovector part of the optical potential changes sign, a phenomenon referred to as isospin inversion. We also extract the strength and energy dependence of the imaginary isovector optical potential and find no evidence for an analogous phenomenon over the range of energies, $E leq 200$,MeV, considered in the present work. Finally, we compute for the first time the leading corrections to the Lane parametrization for the isospin-asymmetry dependence of the optical potential and observe an enhanced importance at low scattering energies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا