Do you want to publish a course? Click here

Medium effects in K^+ nuclear interactions

59   0   0.0 ( 0 )
 Added by Jiri Mares
 Publication date 1997
  fields
and research's language is English




Ask ChatGPT about the research

Total and reaction cross sections are derived self consistently from the attenuation cross sections measured in transmission experiments at the AGS for K^+ on Li^6, C, Si and Ca in the momentum range of 500-700 MeV/c by using a V_{opt}=t_{eff}(rho)rho optical potential. Self consistency requires, for the KN in-medium t matrix, that Im t_{eff}(rho) increases linearly with the average nuclear density in excess of a threshold value of 0.088+-0.004 fm^-3. The density dependence of Re t_{eff}(rho) is studied phenomenologically, and also applying a relativistic mean field approach, by fitting the integral cross sections. The real part of the optical potential is found to be systematically less repulsive with increasing energy than expected from the free-space repulsive KN interaction. When the elastic scattering data for Li^6 and C at 715 MeV/c are included in the analysis, a tendency of Re V_{opt} to generate an attractive pocket at the nuclear surface is observed.



rate research

Read More

183 - Maria B. Barbaro 2009
An accurate description of the nuclear response functions for neutrino scattering in the Gev region is essential for the interpretation of present and future neutrino oscillation experiments. Due to the close similarity of electromagnetic and weak scattering processes, we will review the status of the scaling approach and of relativistic modeling for the inclusive electron scattering response functions in the quasielastic and $Delta$-resonance regions. In particular, recent studies have been focused on scaling violations and the degree to which these imply modifications of existing predictions for neutrino reactions. We will discuss sources and magnitude of such violations, emphasizing similarities and differences between electron and neutrino reactions.
110 - Aman D. Sood , Ch. Hartnack , 2011
We aim to explore the in-medium effects on the transverse momentum ($p_{T}$) spectra of $K^{+}$ and $K^{-}$ in lighter mass system $^{12}C+^{12}C$.
93 - M. Kohno 2019
Properties of the baryon-baryon interactions in the strangeness $S=-2$ sector of chiral effective field theory at the next-to-leading order (NLO) level are explored by calculating $Xi$ single-particle potentials in symmetric nuclear matter. The results are transformed to the $Xi$ potential in finite nuclei by a local-density approximation with convolution by a Gaussian form factor to simulate finite-range effects. The $Xi$ potential is repulsive in a central region, and attractive in a surface area when the $Xi$ energy is low. The attractive pocket can lower the $Xi^-$ $s$ and $p$ atomic states. The obtained binding energies in $^{12}$C and $^{14}$N are found to be conformable with those found in emulsion experiments at Japans National Laboratory for High Energy Physics (KEK). $K^+$ spectra of $(K^-, K^+)$ $Xi$ production inclusive processes on $^9$Be and $^{12}$C are also evaluated, using a semi-classical distorted wave method. The absolute values of the cross section are properly reproduced for $^9$Be, but the peak locates at a lower energy position than that of the experimental data. The calculated spectrum of $^{12}$C should be compared with the forthcoming result from the new experiments recently carried out at KEK with better resolution than before. The comparison would be valuable to improve the understanding of the $Xi N$ interaction, the parametrization of which has still large uncertainties.
Recent experiments performed on inclusive electron scattering from nuclear targets have measured the nucleon electromagnetic structure functions $F_1(x,Q^2)$, $F_2(x,Q^2)$ and $F_L(x,Q^2)$ in $^{12}C$, $^{27}Al$, $^{56}Fe$ and $^{64}Cu$ nuclei. The measurements have been done in the energy region of $1 GeV^2 < W^2 < 4 GeV^2$ and $Q^2$ region of $0.5 GeV^2 < Q^2 < 4.5 GeV^2$. We have calculated nuclear medium effects in these structure functions arising due to the Fermi motion, binding energy, nucleon correlations, mesonic contributions from pion and rho mesons and shadowing effects. The calculations are performed in a local density approximation using relativistic nucleon spectral function which include nucleon correlations. The numerical results are compared with the recent experimental data from JLab and also with some earlier experiments.
175 - C.Bleve , G.Co` , I.De Mitri 2000
The effects of nuclear re-interactions in the quasi-elastic neutrino-nucleus scattering are investigated with a phenomenological model. We found that the nuclear responses are lowered and their maxima are shifted towards higher excitation energies. This is reflected on the total neutrino-nucleus cross section in a general reduction of about 15% for neutrino energies above 300 MeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا