No Arabic abstract
An accurate description of the nuclear response functions for neutrino scattering in the Gev region is essential for the interpretation of present and future neutrino oscillation experiments. Due to the close similarity of electromagnetic and weak scattering processes, we will review the status of the scaling approach and of relativistic modeling for the inclusive electron scattering response functions in the quasielastic and $Delta$-resonance regions. In particular, recent studies have been focused on scaling violations and the degree to which these imply modifications of existing predictions for neutrino reactions. We will discuss sources and magnitude of such violations, emphasizing similarities and differences between electron and neutrino reactions.
The effects of nuclear re-interactions in the quasi-elastic neutrino-nucleus scattering are investigated with a phenomenological model. We found that the nuclear responses are lowered and their maxima are shifted towards higher excitation energies. This is reflected on the total neutrino-nucleus cross section in a general reduction of about 15% for neutrino energies above 300 MeV.
Different approaches to the calculation of neutrino-nucleus cross sections are summarized. Potential impact of improving the nuclear physics input into neutrino interactions and cross section calculations on uncovering new physics is discussed using the example of reactor anomaly. Importance of a thorough understanding of neutrino interactions in astrophysics and cosmology is highlighted.
Nuclear model effects in neutrino-nucleus quasielastic scattering are studied within the distorted wave impulse approximation, using a relativistic shell model to describe the nucleus, and comparing it with the relativistic Fermi gas. Both charged-current and neutral-current processes are considered and, for the neutral-current case, the uncertainties that nuclear effects may introduce in measurements of the axial strange form-factor of the nucleon are investigated.
We present a phenomenological study of nuclear effects in neutrino charged-current interactions, using transverse kinematic imbalances in exclusive measurements. Novel observables with minimal dependence on neutrino energy are proposed to study quasielastic scattering, and especially resonance production. They should be able to provide direct constraints on nuclear effects in neutrino- and antineutrino-nucleus interactions.
We present a study of neutrino-nucleus interactions at the T2K experiment based on the GiBUU transport model. The aim of T2K is to measure $ u_e$ appearance and $theta_{13}$, but it will also be able to do a precise measurement of $ u_mu$ disappearance. The former requires a good understanding of $pi^0$ production while the latter is closely connected with a good understanding of quasielastic scattering. For both processes we investigate the influence of nuclear effects and particular final-state interactions on the expected event rates taking into account the T2K detector setup.