Do you want to publish a course? Click here

Short-range correlations in (e,e$$p) and (e,e$$pp) reactions on complex nuclei

359   0   0.0 ( 0 )
 Added by Jan. Ryckebusch
 Publication date 1995
  fields
and research's language is English




Ask ChatGPT about the research

The influence of short-range correlations (SRC) on the triple-coincidence (e,e$$pp) reactions is studied. The non-relativistic model uses a mean-field potential to account for the distortions that the escaping particles undergo. Apart from the SRC, that are implemented through a Jastrow ansatz with a realistic correlation function, we incorporate the contribution from pion exchange and intermediate $Delta _{33}$ currents. The (e,e$$pp) cross sections are predicted to exhibit a sizeable sensitivity to the SRC. The contribution from the two-nucleon breakup channel to the semi-exclusive $^{12}$C(e,e$$p) cross section is calculated in the kinematics of a recent NIKHEF-K experiment. In the semi-exclusive channel, a selective sensitivity in terms of the missing energy and momentum to the SRC is found.



rate research

Read More

We discuss the kinematical and dynamical conditions necessary for probing highly elusive three-nucleon short range correlations~(3N-SRCs) in nuclei through inclusive electron scattering. The kinematic requirements that should be satisfied in order to isolate 3N-SRCs in inclusive processes are derived. We demonstrate that the sequence of two short-range NN interactions represents the main mechanism. Within this mechanism we predict a quadratic dependence of the inclusive cross section ratios of nuclei to $^3$He in the 3N-SRC region to the same ratio measured in 2N-SRC domain. The first analysis of the available data satisfying the necessary 3N-SRC kinematical conditions is presented. This analysis provides tantalizing signatures of scaling associated with the onset of 3N-SRCs. The same data are also consistent with the prediction of the quadratic relation between the ratios measured in the 3N and 2N-SRC regions for nuclei ranging $4 le A le 197$. This agreement made it possible to extract $a_3(A)$, the probability of 3N-SRCs relative to the $^3$He nucleus. For $a_3(A)$ we obtain noticeably larger magnitudes than for the analogous parameter, $a_2(A)$ for 2N-SRCs.
99 - J.E. Amaro 2003
Electron-induced one-nucleon knock-out observables are computed for moderate to high momentum transfer making use of semi-relativistic expressions for the one-body and two-body meson-exchange current matrix elements. Emphasis is placed on the semi-relativistic form of the $Delta$-isobar exchange current and several prescriptions for the dynamical-equivalent form of the $Delta$-propagator are analyzed. To this end, the inclusive transverse response function, evaluated within the context of the semi-relativistic approach and using different prescriptions for the $Delta$-propagator, is compared with the fully relativistic calculation performed within the scheme of the relativistic Fermi gas model. It is found that the best approximation corresponds to using the traditional static $Delta$-propagator. These semi-relativistic approaches, which contain important aspects of relativity, are implemented in a distorted wave analysis of quasielastic $(e,ep)$ reactions. Final state interactions are incorporated through a phenomenological optical potential model and relativistic kinematics is assumed when calculating the energy of the ejected nucleon. The results indicate that meson exchange currents may modify substantially the $TL$ asymmetry for high missing momentum.
Short range correlated (SRC) nucleon-nucleon pairs in nuclei are typically studied using measurements of electron-induced hard nucleon-knockout reactions (e.g. $(e,ep)$ and $(e,epN)$), where the kinematics of the knocked-out nucleons are used to infer their initial state prior to the interaction. The validity of this inference relies on our understanding of the scattering reaction, most importantly how rescattering of the detected nucleons (final state interactions or FSI) distort their kinematical distributions. Recent SRC measurements on medium to heavy nuclei have been performed at high-$x_B$ (i.e., anti-parallel kinematics) where calculations of light nuclei indicate that such distortion effects are small. Here we study the impact of FSI on recent $^{12}$C$(e,ep)$ and $^{12}$C$(e,epp)$ measurements using a transport approach. We find that while FSI can significantly distort the measured kinematical distributions of SRC breakup events, selecting high-$x_B$ anti-parallel events strongly suppresses such distortions. In addition, including the effects of FSI improves the agreement between Generalized Contact Formalism-based calculations and data and can help identify those observables that have minimal sensitivity to FSI effects. This result helps confirm the interpretation of experimental data in terms of initial-state momentum distributions and provides a new tool for the study of SRCs using lepton-scattering reactions.
We have developed a versatile software package for the simulation of di-electron production in $pp$ and $dp$ collisions at SIS energies. Particular attention has been paid to incorporate different descriptions of the Dalitz decay $Delta to N e^+e^-$ via a common interface. In addition, suitable parameterizations for the virtual bremsstrahlung process $NN to NN e^+e^-$ based on one-boson exchange models have been implemented. Such simulation tools with high flexibility of the framework are important for the interpretation of the di-electron data taken with the HADES spectrometer and the design of forthcoming experiments.
68 - Haidong Liu 2006
We compiled the systematical measurements of anti-nucleus production in ultra-relativistic heavy ion collisions as well as those in $pp$, $pbar{p}$, $gamma p$ and $e^{+}e^{-}$ at various beam energies. The anti-baryon phase space density inferred from $bar{d}/bar{p}$ ratio in $A+A$, $p+A$, $pp(bar{p})$ and $gamma p$ collisions is found to follow a universal distribution as a function of center of mass of beam energy and can be described in a statistical model. We demonstrated that anti-baryon density in all the collisions is the highest when the collisions are dominated by the processes of $g+g$ or $bar{q}+g$. In $e^+e^-$ collisions at LEP, the cross section of $qbar{q}g$ is suppressed by a factor of strong coupling constant $alpha_s$ relative to $qbar{q}$. This can consistently explain the $bar{d}$ suppression observed by ALEPH relative to that in $e^+e^-to ggg$ by ARGUS. We discuss the implications to the baryon enhancement at high transverse momentum at RHIC when jet is quenched.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا