Do you want to publish a course? Click here

Towards observation of three-nucleon short-range correlations in high Q^2 A(e, e)X reactions

74   0   0.0 ( 0 )
 Added by Misak Sargsian
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the kinematical and dynamical conditions necessary for probing highly elusive three-nucleon short range correlations~(3N-SRCs) in nuclei through inclusive electron scattering. The kinematic requirements that should be satisfied in order to isolate 3N-SRCs in inclusive processes are derived. We demonstrate that the sequence of two short-range NN interactions represents the main mechanism. Within this mechanism we predict a quadratic dependence of the inclusive cross section ratios of nuclei to $^3$He in the 3N-SRC region to the same ratio measured in 2N-SRC domain. The first analysis of the available data satisfying the necessary 3N-SRC kinematical conditions is presented. This analysis provides tantalizing signatures of scaling associated with the onset of 3N-SRCs. The same data are also consistent with the prediction of the quadratic relation between the ratios measured in the 3N and 2N-SRC regions for nuclei ranging $4 le A le 197$. This agreement made it possible to extract $a_3(A)$, the probability of 3N-SRCs relative to the $^3$He nucleus. For $a_3(A)$ we obtain noticeably larger magnitudes than for the analogous parameter, $a_2(A)$ for 2N-SRCs.



rate research

Read More

The influence of short-range correlations (SRC) on the triple-coincidence (e,e$$pp) reactions is studied. The non-relativistic model uses a mean-field potential to account for the distortions that the escaping particles undergo. Apart from the SRC, that are implemented through a Jastrow ansatz with a realistic correlation function, we incorporate the contribution from pion exchange and intermediate $Delta _{33}$ currents. The (e,e$$pp) cross sections are predicted to exhibit a sizeable sensitivity to the SRC. The contribution from the two-nucleon breakup channel to the semi-exclusive $^{12}$C(e,e$$p) cross section is calculated in the kinematics of a recent NIKHEF-K experiment. In the semi-exclusive channel, a selective sensitivity in terms of the missing energy and momentum to the SRC is found.
Different types of high-energy hadron-nucleus cross sections are discussed emphasizing the role played by Nucleon-Nucleon (NN) Short-Range Correlations (SRC) and Gribov Inelastic Shadowing (IS)
Three nucleon short range correlations~(SRCs) are one of the most elusive structures in nuclei. Their observation and the subsequent study of their internal makeup will have a significant impact on our understanding of the dynamics of super-dense nuclear matter which exists at the cores of neutron stars. We discuss the kinematic conditions and observables that are most favorable for probing 3N-SRCs in inclusive electro-nuclear processes and make a prediction for a quadratic dependence of the probabilities of finding a nucleon in 2N- and 3N- SRCs. We demonstrate that this prediction is consistent with the limited high energy experimental data available, suggesting that we have observed, for the first time, 3N-SRCs in electro-nuclear processes. Our analysis enables us to extract $a_3(A,Z)$, the probability of finding 3N-SRCs in nuclei relative to the A=3 system.
A linear correlation is found between the magnitude of nucleon-nucleon short-range correlations and the nuclear binding energy per nucleon with pairing energy removed. By using this relation, the strengths of nucleon-nucleon short-range correlations of some unmeasured nuclei are predicted. Discussions on nucleon-nucleon pairing energy and nucleon-nucleon short-range correlations are made. The found nuclear dependence of nucleon-nucleon short-range correlations may shed some lights on the short-range structure of nucleus.
By analyzing recent microscopic many-body calculations of few-nucleon systems and complex nuclei performed by different groups in terms of realistic nucleon-nucleon (NN) interactions, it is shown that NN short-range correlations (SRCs) have a universal character, in that the correlation hole that they produce in nuclei appears to be almost A-independent and similar to the correlation hole in the deuteron. The correlation hole creates high-momentum components, missing in a mean-field (MF) description and exhibiting several scaling properties and a peculiar spin-isospin structure. In particular, the momentum distribution of a pair of nucleons in spin-isospin state $(ST)=(10)$, depending upon the pair relative ($k_{rel}$) and center-of-mass (c.m.) ($K_{c.m.}$) momenta, as well as upon the angle $Theta$ between them, exhibits a remarkable property: in the region $k_{rel}gtrsim 2,fm^{-1}$ and $K_{c.m.}lesssim 1,fm^{-1} $, the relative and c.m. motions are decoupled and the two-nucleon momentum distribution factorizes into the deuteron momentum distribution and an A-dependent momentum distribution describing the c.m. motion of the pair in the medium. The impact of these and other properties of one- and two-nucleon momentum distributions on various nuclear phenomena, on ab initio calculations in terms of low-momentum interactions, as well as on ongoing experimental investigations of SRCs, are briefly commented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا