Do you want to publish a course? Click here

Collective modes in relativistic npe matter at finite temperature

362   0   0.0 ( 0 )
 Publication date 2006
  fields
and research's language is English
 Authors L. Brito




Ask ChatGPT about the research

Isospin and density waves in neutral neutron-proton-electron (npe) matter are studied within a relativistic mean-field hadron model at finite temperature with the inclusion of the electromagnetic field. The dispersion relation is calculated and the collective modes are obtained. The unstable modes are discussed and the spinodals, which separate the stable from the unstable regions, are shown for different values of the momentum transfer at various temperatures. The critical temperatures are compared with the ones obtained in a system without electrons. The largest critical temperature, 12.39 MeV, occurs for a proton fraction y_p=0.47. For y_p=0.3 we get $T_{cr}$ =5 MeV and for y_p>0.495 $T_crlesssim 8$ MeV. It is shown that at finite temperature the distillation effect in asymmetric matter is not so efficient and that electron effects are particularly important for small momentum transfers.



rate research

Read More

140 - L. Tolos , D. Cabrera , A. Ramos 2008
We study the properties of $K$ and $bar K$ mesons in nuclear matter at finite temperature from a chiral unitary approach in coupled channels which incorporates the $s$- and p-waves of the kaon-nucleon interaction. The in-medium solution accounts for Pauli blocking effects, mean-field binding on all the baryons involved, and $pi$ and kaon self-energies. We calculate $K$ and $bar K$ (off-shell) spectral functions and single particle properties. The $bar K$ effective mass gets lowered by about -50 MeV in cold nuclear matter at saturation density and by half this reduction at T=100 MeV. The p-wave contribution to the ${bar K}$ optical potential, due to $Lambda$, $Sigma$ and $Sigma^*$ excitations, becomes significant for momenta larger than 200 MeV/c and reduces the attraction felt by the $bar K$ in the nuclear medium.The $bar K$ spectral function spreads over a wide range of energies, reflecting the melting of the $Lambda (1405)$ resonance and the contribution of $YN^{-1}$ components at finite temperature. In the $KN$ sector, we find that the low-density theorem is a good approximation for the $K$ self-energy close to saturation density due to the absence of resonance-hole excitations. The $K$ potential shows a moderate repulsive behavior, whereas the quasi-particle peak is considerably broadened with increasing density and temperature. We discuss the implications for the decay of the $phi$ meson at SIS/GSI energies as well as in the future FAIR/GSI project.
The equilibrium distributions of the different pasta geometries and their linear sizes are calculated from the mean field Gibbs energy functional in symmetric nuclear matter at finite temperature. The average sizes and shapes coincide approximately with the ones predicted by a standard pasta calculation in the coexisting phase approximation, but fluctuations are additionally calculated and seen to increase with temperature and baryonic density. The different pasta shapes are shown to coexist in a wide domain of density and temperature, in qualitative agreement with the findings of large scale molecular dynamics simulations, but with a much less expensive computational cost.
313 - D. Lopez-Val , A. Rios , A. Polls 2006
The properties of spin polarized neutron matter are studied both at zero and finite temperature using the D1 and the D1P parameterizations of the Gogny interaction. The results show two different behaviors: whereas the D1P force exhibits a ferromagnetic transition at a density of $rho_c sim 1.31$ fm$^{-3}$ whose onset increases with temperature, no sign of such a transition is found for D1 at any density and temperature, in agreement with recent microscopic calculations.
The properties of spin polarized neutron matter are studied both at zero and finite temperature using Skyrme-type interactions. It is shown that the critical density at which ferromagnetism takes place decreases with temperature. This unexpected behaviour is associated to an anomalous behaviour of the entropy which becomes larger for the polarized phase than for the unpolarized one above a certain critical density. This fact is a consequence of the dependence of the entropy on the effective mass of the neutrons with different third spin component and a new constraint on the parameters of the effective Skyrme force is derived in order to avoid such a behaviour.
108 - Arnau Rios 2005
Bulk and single-particle properties of hot hyperonic matter are studied within the Brueckner-Hartree-Fock approximation extended to finite temperature. The bare interaction in the nucleon sector is the Argonne V18 potential supplemented with an effective three-body force to reproduce the saturating properties of nuclear matter. The modern Nijmegen NSC97e potential is employed for the hyperon-nucleon and hyperon-hyperon interactions. The effect of the temperature on the in-medium effective interaction is found to be, in general, very small and the single-particle potentials differ by at most 25% for temperatures in the range from 0 to 60 MeV. The bulk properties of infinite matter of baryons, either nuclear isospin symmetric or a beta-stable composition which includes a non-zero fraction of hyperons, are obtained. It is found that the presence of hyperons can modify the thermodynamical properties of the system in a non-negligible way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا