Do you want to publish a course? Click here

Transport study of charged current interactions in neutrino-nucleus reactions

77   0   0.0 ( 0 )
 Added by Wolfgang Cassing
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

Within a dynamical transport approach we investigate charged current interactions in neutrino-nucleus reactions for neutrino energies of 0.3 - 1.5 GeV with particular emphasis on resonant pion production channels via the $Delta_{33}(1232)$ resonance. The final-state-interactions of the resonance as well as of the emitted pions are calculated explicitly for $^{12}C$ and $^{56}Fe$ nuclei and show a dominance of pion suppression at moderate momenta $p_pi >$ 0.2 GeV/c. A comparison to integrated $pi^+$ spectra for $ u_mu + ^{12}C$ reactions with the available (preliminary) data demonstrates a reasonable agreement.



rate research

Read More

Inclusive neutrino-nucleus cross sections are calculated using a consistent relativistic mean-field theoretical framework. The weak lepton-hadron interaction is expressed in the standard current-current form, the nuclear ground state is described with the relativistic Hartree-Bogoliubov model, and the relevant transitions to excited nuclear states are calculated in the relativistic quasiparticle random phase approximation. Illustrative test calculations are performed for charged-current neutrino reactions on $^{12}$C, $^{16}$O, $^{56}$Fe, and $^{208}$Pb, and results compared with previous studies and available data. Using the experimental neutrino fluxes, the averaged cross sections are evaluated for nuclei of interest for neutrino detectors. We analyze the total neutrino-nucleus cross sections, and the evolution of the contribution of the different multipole excitations as a function of neutrino energy. The cross sections for reactions of supernova neutrinos on $^{16}$O and $^{208}$Pb target nuclei are analyzed as functions of the temperature and chemical potential.
We have extended our model for charged current neutrino-nucleus interactions to neutral current reactions. For the elementary neutrino-nucleon interaction, we take into account quasielastic scattering, Delta excitation and the excitation of the resonances in the second resonance region. Our model for the neutrino-nucleus collisions includes in-medium effects such as Fermi motion, Pauli blocking, nuclear binding, and final-state interactions. They are implemented by means of the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) coupled-channel transport model. This allows us to study exclusive channels, namely pion production and nucleon knockout. We find that final-state interactions modify considerably the distributions through rescattering, charge-exchange and absorption. Side-feeding induced by charge-exchange scattering is important in both cases. In the case of pions, there is a strong absorption associated with the in-medium pionless decay modes of the Delta, while nucleon knockout exhibits a considerable enhancement of low energy nucleons due to rescattering. At neutrino energies above 1 GeV, we also obtain that the contribution to nucleon knockout from Delta excitation is comparable to that from quasielastic scattering.
We present our recent progress in the description of neutrino-nucleus interaction in the GeV region, of interest for ongoing and future oscillation experiments. In particular, we discuss the weak excitation of two-particle-two-hole states induced by meson exchange currents in a fully relativistic framework. We compare the results of our model with recent measurements of neutrino scattering cross sections, showing the crucial role played by two-nucleon knockout in the interpretation of the data.
73 - A.B. Balantekin 2017
Different approaches to the calculation of neutrino-nucleus cross sections are summarized. Potential impact of improving the nuclear physics input into neutrino interactions and cross section calculations on uncovering new physics is discussed using the example of reactor anomaly. Importance of a thorough understanding of neutrino interactions in astrophysics and cosmology is highlighted.
The methods used in the evaluation of the neutrino-nucleus cross section are reviewed. Results are shown for a variety of targets of practical importance. Many of the described reactions are accessible in future experiments with neutrino sources from the pion and muon decays at rest, which might be available at the neutron spallation facilities. Detailed comparison between the experimental and theoretical results would establish benchmarks needed for verification and/or parameter adjustment of the nuclear models. Having a reliable tool for such calculation is of great importance in a variety of applications, e.g. the neutrino oscillation studies, detection of supernova neutrinos, description of the neutrino transport in supernovae, and description of the r-process nucleosynthesis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا