Do you want to publish a course? Click here

Inclusive charged-current neutrino-nucleus reactions calculated with the relativistic quasiparticle random phase approximation

192   0   0.0 ( 0 )
 Added by Nils Paar Dr.
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inclusive neutrino-nucleus cross sections are calculated using a consistent relativistic mean-field theoretical framework. The weak lepton-hadron interaction is expressed in the standard current-current form, the nuclear ground state is described with the relativistic Hartree-Bogoliubov model, and the relevant transitions to excited nuclear states are calculated in the relativistic quasiparticle random phase approximation. Illustrative test calculations are performed for charged-current neutrino reactions on $^{12}$C, $^{16}$O, $^{56}$Fe, and $^{208}$Pb, and results compared with previous studies and available data. Using the experimental neutrino fluxes, the averaged cross sections are evaluated for nuclei of interest for neutrino detectors. We analyze the total neutrino-nucleus cross sections, and the evolution of the contribution of the different multipole excitations as a function of neutrino energy. The cross sections for reactions of supernova neutrinos on $^{16}$O and $^{208}$Pb target nuclei are analyzed as functions of the temperature and chemical potential.



rate research

Read More

Neutrino-nucleus quasielastic scattering is studied in the plane wave impulse approximation for three nuclear models: the relativistic Fermi gas (RFG), the independent-particle shell model (IPSM) and the natural orbitals (NO) model with Lorentzian dependence of the excitation energy. A complete study of the kinematics of the semi-inclusive process and the associated cross sections are presented and discussed for 40 Ar and 12 C. Inclusive cross sections are also obtained by integrating the semi-inclusive expressions over the outgoing hadron. Results are consistent with previous studies restricted to the inclusive channel. In particular, a comparison with the analytical results for the RFG model is performed. Explicit expressions for the hadronic tensor and the 10 semi-inclusive nuclear responses are given. Theoretical predictions are compared with semi-inclusive experimental data from T2K experiment.
We compare the results of the relativistic Greens function model with the experimental data of the charged-current inclusive differential neutrino-nucleus cross sections published by the T2K Collaboration. The model, which is able to describe both MINER$ u$A and MiniBooNE charged-current quasielastic scattering data, underpredicts the inclusive T2K cross sections.
85 - A. Ravlic , E. Yuksel , Y. F. Niu 2020
The electron capture process plays an important role in the evolution of the core collapse of a massive star that precedes the supernova explosion. In this study, the electron capture on nuclei in stellar environment is described in the relativistic energy density functional framework, including both the finite temperature and nuclear pairing effects. Relevant nuclear transitions $J^pi = 0^pm, 1^pm, 2^pm$ are calculated using the finite temperature proton-neutron quasiparticle random phase approximation with the density-dependent meson-exchange effective interaction DD-ME2. The pairing and temperature effects are investigated in the Gamow-Teller transition strength as well as the electron capture cross sections and rates for ${}^{44}$Ti and ${}^{56}$Fe in stellar environment. It is found that the pairing correlations establish an additional unblocking mechanism similar to the finite temperature effects, that can allow otherwise blocked single-particle transitions. Inclusion of pairing correlations at finite temperature can significantly alter the electron capture cross sections, even up to a factor of two for ${}^{44}$Ti, while for the same nucleus electron capture rates can increase by more than one order of magnitude. We conclude that for the complete description of electron capture on nuclei both pairing and temperature effects must be taken into account.
76 - W. Cassing , M. Kant 2006
Within a dynamical transport approach we investigate charged current interactions in neutrino-nucleus reactions for neutrino energies of 0.3 - 1.5 GeV with particular emphasis on resonant pion production channels via the $Delta_{33}(1232)$ resonance. The final-state-interactions of the resonance as well as of the emitted pions are calculated explicitly for $^{12}C$ and $^{56}Fe$ nuclei and show a dominance of pion suppression at moderate momenta $p_pi >$ 0.2 GeV/c. A comparison to integrated $pi^+$ spectra for $ u_mu + ^{12}C$ reactions with the available (preliminary) data demonstrates a reasonable agreement.
66 - Giampaolo Co 2006
The Random Phase Approximation theory is used to calculate the total cross sections of electron neutrinos on $^{12}$C nucleus. The role of the excitation of the discrete spectrum is discussed. A comparison with electron scattering and muon capture data is presented. The cross section of electron neutrinos coming from muon decay at rest is calculated.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا