Do you want to publish a course? Click here

Superfluidity within Exact Renormalisation Group approach

212   0   0.0 ( 0 )
 Added by Boris Krippa
 Publication date 2005
  fields Physics
and research's language is English
 Authors Boris Krippa




Ask ChatGPT about the research

The application of the exact renormalisation group to a many-fermion system with a short-range attractive force is studied. We assume a simple ansatz for the effective action with effective bosons, describing pairing effects and derive a set of approximate flow equations for the effective coupling including boson and fermionic fluctuations. The phase transition to a phase with broken symmetry is found at a critical value of the running scale. The mean-field results are recovered if boson-loop effects are omitted. The calculations with two different forms of the regulator was shown to lead to similar results.



rate research

Read More

126 - Boris Krippa 2006
The application of the exact renormalisation group to symmetric as well as asymmetric many-fermion systems with a short-range attractive force is studied. Assuming an ansatz for the effective action with effective bosons, describing pairing effects a set of approximate flow equations for the effective coupling including boson and fermionic fluctuations has been derived. The phase transition to a phase with broken symmetry is found at a critical value of the running scale. The mean-field results are recovered if boson-loop effects are omitted. The calculations with two different forms of the regulator are shown to lead to a similar results. We find that, being quite small in the case of the symmetric many-fermion system the corrections to mean field approximation becomes more important with increasing mass asymmetry.
129 - Boris Krippa 2006
The application of the nonperturbative renormalisation group approach to a system with two fermion species is studied. Assuming a simple ansatz for the effective action with effective bosons, describing pairing effects we derive a set of approximate flow equations for the effective coupling including boson and fermionic fluctuations. The case of two fermions with different masses but coinciding Fermi surfaces is considered. The phase transition to a phase with broken symmetry is found at a critical value of the running scale. The large mass difference is found to disfavour the formation of pairs. The mean-field results are recovered if the effects of boson loops are omitted. While the boson fluctuation effects were found to be negligible for large values of $p_{F} a$ they become increasingly important with decreasing $p_{F} a$ thus making the mean field description less accurate.
We use the Wilsonian functional Renormalisation Group (RG) to study quantum corrections for the Higgs inflationary action including the effect of gravitons, and analyse the leading-order quantum gravitational corrections to the Higgs quartic coupling, as well as its non-minimal coupling to gravity and Newtons constant, at the inflationary regime and beyond. We explain how within this framework the effect of Higgs and graviton loops can be sufficiently suppressed during inflation, and we also place a bound on the corresponding value of the infrared RG cut-off scale during inflation. Finally, we briefly discuss the potential embedding of the model within the scenario of Asymptotic Safety, while all main equations are explicitly presented.
442 - Boris Krippa 2014
Functional renormalisation group approach is applied to a imbalanced many- fermion system with a short-range attractive force. Composite boson field is introduced to describe the pairing between different flavour fermions. A set of approximate flow equations for the effective couplings is derived and solved. We identify the critical values of mass and particle number density mismatch when the system undergoes a phase transition to a normal state and determine the phase diagram both at unitary regime and nearby.
432 - J. ODwyer , H. Osborn 2020
The Polchinski version of the exact renormalisation group equations is applied to multicritical fixed points, which are present for dimensions between two and four, for scalar theories using both the local potential approximation and its extension, the derivative expansion. The results are compared with the epsilon expansion by showing that the non linear differential equations may be linearised at each multicritical point and the epsilon expansion treated as a perturbative expansion. The results for critical exponents are compared with corresponding epsilon expansion results from standard perturbation theory. The results provide a test for the validity of the local potential approximation and also the derivative expansion. An alternative truncation of the exact RG equation leads to equations which are similar to those found in the derivative expansion but which gives correct results for critical exponents to order $epsilon$ and also for the field anomalous dimension to order $epsilon^2$. An exact marginal operator for the full RG equations is also constructed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا