A multi-channel algebraic scattering theory, to find solutions of coupled-channel scattering problems with interactions determined by collective models, has been structured to ensure that the Pauli principle is not violated. Positive (scattering) and negative (sub-threshold) solutions can be found to predict both the compound nucleus sub-threshold spectrum and all resonances due to coupled channel effects that occur on a smooth energy varying background.
Analyzing powers in low-energy neutron scattering from 12C are calculated in an algebraic momentum-space coupled-channel formalism (MCAS). The results are compared with recently obtained experimental data. The channel-coupling potentials have been defined previously to reproduce the total cross section and sub-threshold bound states of the compound system. Without further adjustment, good agreement with data for the analyzing powers is obtained.
A Multi-Channel Algebraic Scattering (MCAS) theory is presented with which the properties of a compound nucleus are found from a coupled-channel problem. The method defines both the bound states and resonances of the compound nucleus, even if the compound nucleus is particle unstable. All resonances of the system are found no matter how weak and/or narrow. Spectra of mass-7 nuclei and of {}^{15}F, and MCAS results for a radiative capture cross section are presented.
The proton-rich nucleus $^{23}$Al has a ground state just 123 keV below the proton drip-line, and as a result comparatively little is known experimentally about its properties, as with many such nuclei. Theoretical investigations have tended to model exclusively the ground and first one to three excited states known. In this paper, we theoretically model most of the known spectrum, and predict what states may as yet be unobserved. We use the multichannel algebraic scattering (MCAS) method to describe states as resonances of a valence proton coupled to a $^{22}$Mg rotor core. Six states with low-excitation energies and defined $J^pi$ are matched, and we make the first prediction of the properties of four others and propound the possible existence of several more.
Current long baseline experiments aim at measuring neutrino oscillation parameters with a high precision. A critical quantity is the neutrino energy which can not be measured directly but has to be reconstructed from the observed hadrons. A good knowledge of neutrino-nucleus interactions is thus necessary to minimize the systematic uncertainties in neutrino fluxes, backgrounds and detector responses. In particular final-state interactions inside the target nucleus modify considerably the particle yields through rescattering, charge-exchange and absorption. Nuclear effects can be described with our coupled channel GiBUU transport model where the neutrino first interacts with a bound nucleon producing secondary particles which are then transported out of the nucleus. In this contribution, we give some examples for the application of our model focusing in particular on the MiniBooNE and K2K experiments.
The effects of components in an assumed model interaction potential, as well as of the order to which its deformation is taken, upon resonances in the low-energy cross sections and upon sub-threshold bound states of the compound nucleus (${}^{13}$C) are discussed.
K. Amos
,P. Fraser
,S. Karataglidis
.
(2005)
.
"Low energy nuclear scattering and sub-threshold spectra from a multi-channel algebraic scattering theory"
.
Ken Amos
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا