Do you want to publish a course? Click here

Neutrino scattering with nuclei - Theory of low energy nuclear effects and its applications

141   0   0.0 ( 0 )
 Added by Tina Leitner
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Current long baseline experiments aim at measuring neutrino oscillation parameters with a high precision. A critical quantity is the neutrino energy which can not be measured directly but has to be reconstructed from the observed hadrons. A good knowledge of neutrino-nucleus interactions is thus necessary to minimize the systematic uncertainties in neutrino fluxes, backgrounds and detector responses. In particular final-state interactions inside the target nucleus modify considerably the particle yields through rescattering, charge-exchange and absorption. Nuclear effects can be described with our coupled channel GiBUU transport model where the neutrino first interacts with a bound nucleon producing secondary particles which are then transported out of the nucleus. In this contribution, we give some examples for the application of our model focusing in particular on the MiniBooNE and K2K experiments.



rate research

Read More

115 - X.-G. Lu , L. Pickering , S. Dolan 2015
We present a phenomenological study of nuclear effects in neutrino charged-current interactions, using transverse kinematic imbalances in exclusive measurements. Novel observables with minimal dependence on neutrino energy are proposed to study quasielastic scattering, and especially resonance production. They should be able to provide direct constraints on nuclear effects in neutrino- and antineutrino-nucleus interactions.
[Background] Meticulous modeling of neutrino-nucleus interactions is essential to achieve the unprecedented precision goals of present and future accelerator-based neutrino-oscillation experiments. [Purpose] Confront our calculations of charged-current quasielastic cross section with the measurements of MiniBooNE and T2K, and to quantitatively investigate the role of nuclear-structure effects, in particular, low-energy nuclear excitations in forward muon scattering. [Method] The model takes the mean-field (MF) approach as the starting point, and solves Hartree-Fock (HF) equations using a Skyrme (SkE2) nucleon-nucleon interaction. Long-range nuclear correlations are taken into account by means of the continuum random-phase approximation (CRPA) framework. [Results] We present our calculations on flux-folded double differential, and flux-unfolded total cross sections off $^{12}$C and compare them with MiniBooNE and (off-axis) T2K measurements. We discuss the importance of low-energy nuclear excitations for the forward bins. [Conclusions] The CRPA predictions describe the gross features of the measured cross sections. They underpredict the data (more in the neutrino than in the antineutrino case) because of the absence of processes beyond pure quasielastic scattering in our model. At very forward muon scattering, low-energy nuclear excitations ($omega < $ 50 MeV) account for nearly 50% of the flux-folded cross section.
505 - T. Leitner , U. Mosel 2010
We apply the GiBUU model to questions relevant for current and future neutrino long-baseline experiments, we address in particular the relevance of charged-current reactions for neutrino disappearance experiments. A correct identification of charged-current quasielastic (CCQE) events - which is the signal channel in oscillation experiments - is relevant for the neutrino energy reconstruction and thus for the oscillation result. We show that about 20% of the quasielastic cross section is misidentified in present-day experiments and has to be corrected for by means of event generators. Furthermore, we show that also a significant part of 1pi+ (> 40%) events is misidentified as CCQE mainly caused by the pion absorption in the nucleus. We also discuss the dependence of both of these numbers on experimental detection thresholds. We further investigate the influence of final-state interactions on the neutrino energy reconstruction.
121 - N. Van Dessel , V. Pandey , H. Ray 2020
The prospects of extracting new physics signals in a coherent elastic neutrino-nucleus scattering (CE$ u$NS) process are limited by the precision with which the underlying nuclear structure physics, embedded in the weak nuclear form factor, is known. We present microscopic nuclear structure physics calculations of charge and weak nuclear form factors and CE$ u$NS cross sections on $^{12}$C, $^{16}$O, $^{40}$Ar, $^{56}$Fe and $^{208}$Pb nuclei. We obtain the proton and neutron densities, and charge and weak form factors by solving Hartree-Fock equations with a Skyrme (SkE2) nuclear potential. We validate our approach by comparing $^{208}$Pb and $^{40}$Ar charge form factor predictions with elastic electron scattering data. In view of the worldwide interest in liquid-argon based neutrino and dark matter experiments, we pay special attention to the $^{40}$Ar nucleus and make predictions for the $^{40}$Ar weak form factor and the CE$ u$NS cross sections. Furthermore, we attempt to gauge the level of theoretical uncertainty pertaining to the description of the $^{40}$Ar form factor and CE$ u$NS cross sections by comparing relative differences between recent microscopic nuclear theory and widely-used phenomenological form factor predictions. Future precision measurements of CE$ u$NS will potentially help in constraining these nuclear structure details that will in turn improve prospects of extracting new physics.
Neutrino-induced pion production on nuclear targets is the major inelastic channel in all present-day neutrino-oscillation experiments. It has to be understood quantitatively in order to be able to reconstruct the neutrino-energy at experiments such as MiniBooNE or K2K and T2K. We report here results of cross section calculations for both this channel and for quasielastic scattering within the semiclassical GiBUU method. This methods contains scattering, both elastic and inelastic, absorption and side-feeding of channels all in a unitary, common theoretical framework and code. We find that charged current quasielastic scattering (CCQE) and $1 pi$ production are closely entangled in actual experiments, due to final state interactions of the scattered nucleons on one hand and of the $Delta$ resonances and pions, on the other hand. We discuss the uncertainties in the elementary pion production cross sections from ANL and BNL. We find the surprising result that the recent $1 pi$ production cross section data from MiniBooNE are well described by calculations without any FSI. For higher energies we study the validity of the Bloom-Gilman quark-hadron duality for both electron- and neutrino-induced reactions. While this duality holds quite well for nucleon targets, for nuclear targets the average resonance contributions to the structure function $F_2$ are always lower than the DIS values. This result indicates a significant impact of nuclear effects on observables, reducing the cross section and structure functions by at least 30-40% and changing the form of various distributions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا