Do you want to publish a course? Click here

Giant resonances in exotic spherical nuclei within the RPA approach with the Gogny force

108   0   0.0 ( 0 )
 Added by Sophie P\\'eru
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

Theoretical results for giant resonances in the three doubly magic exotic nuclei $^{78}$Ni, $^{100}$Sn and $^{132}$Sn are obtained from Hartree-Fock (HF) plus Random Phase Approximation (RPA) calculations using the D1S parametrization of the Gogny two-body effective interaction. Special attention is paid to full consistency between the HF field and the RPA particle-hole residual interaction. The results for the exotic nuclei, on average, appear similar to those of stable ones, especially for quadrupole and octupole states. More exotic systems have to be studied in order to confirm such a trend. The low energy of the monopole resonance in $^{78}$Ni suggests that the compression modulus in this neutron rich nucleus is lower than the one of stable ones.



rate research

Read More

We propose the universal approach to describe spreading widths of monopole, dipole and quadrupole giant resonances in heavy and superheavy spherical nuclei. Our approach is based on the ideas of the random matrix distribution of the coupling between one-phonon and two-phonon states generated in the random phase approximation. We use the Skyrme interaction SLy4 as our model Hamiltonian to create a single-particle spectrum and to analyze excited states of the doubly magic nuclei $^{132}$Sn, $^{208}$Pb and $^{310}$126. Our results demonstrate that the universal approach enables to describe gross structure of the spreading widths of the considered giant resonances.
384 - B. Dai , B. S. Hu , Y. Z. Ma 2021
Background: The half-life of the famous $^{14}$C $beta$ decay is anomalously long, with different mechanisms: the tensor force, cross-shell mixing, and three-body forces, proposed to explain the cancellations that lead to a small transition matrix element. Purpose: We revisit and analyze the role of the tensor force for the $beta$ decay of $^{14}$C as well as of neighboring isotopes. Methods: We add a tensor force to the Gogny interaction, and derive an effective Hamiltonian for shell-model calculations. The calculations were carried out in a $p$-$sd$ model space to investigate cross-shell effects. Furthermore, we decompose the wave functions according to the total orbital angular momentum $L$ in order to analyze the effects of the tensor force and cross-shell mixing. Results: The inclusion of the tensor force significantly improves the shell-model calculations of the $beta$-decay properties of carbon isotopes. In particular, the anomalously slow $beta$ decay of $^{14}$C can be explained by the isospin $T=0$ part of the tensor force, which changes the components of $^{14}$N with the orbital angular momentum $L=0,1$, and results in a dramatic suppression of the Gamow-Teller transition strength. At the same time, the description of other nearby $beta$ decays are improved. Conclusions: Decomposition of wave function into $L$ components illuminates how the tensor force modifies nuclear wave functions, in particular suppression of $beta$-decay matrix elements. Cross-shell mixing also has a visible impact on the $beta$-decay strength. Inclusion of the tensor force does not seem to significantly change, however, binding energies of the nuclei within the phenomenological interaction.
Lately we have been tackling the problem of describing nuclear collective excitations starting from correlated realistic nucleon-nucleon (NN) interactions. The latter are constructed within the Unitary Correlation Operator Method (UCOM), starting from realistic NN potentials. It has been concluded that first-order RPA with a two-body UCOM interaction is not capable, in general, of reproducing quantitatively the properties of giant resonances (GRs), due to missing higher-order configurations and long-range correlations as well as neglected three-body terms in the Hamiltonian. Here we report results on GRs obtained by employing a UCOM interaction based on the Argonne V18 potential in Second RPA (SRPA) calculations. The same interaction is used to describe the Hartree-Fock (HF) ground state and the residual interactions. We find that the inclusion of second-order configurations -- which effectively dress the underlying HF single-particle states with self-energy insertions -- produces sizable corrections. The effect appears essential for a realistic description of GRs when using the UCOM. We argue that effects of higher than second order should be negligible. Therefore, the UCOM-SRPA emerges as a promising tool for consistent calculations of collective states in closed-shell nuclei. This is an interesting development, given that SRPA can accommodate more physics than RPA (e.g., fragmentation). Remaining discrepancies due to the missing three-body terms and self-consistency issues of the present SRPA model are pointed out.
83 - S.E.A. Orrigo 2006
Fano-resonances are investigated as a new continuum excitation mode in exotic nuclei. By theoretical model calculations we show that the coupling of a single particle elastic channel to closed core-excited channels leads to sharp resonances in the low-energy continuum. A signature for such bound states embedded in the continuum (BSEC) are characteristic interference effects leading to asymmetric line shapes. Following the quasiparticle-core coupling model we consider the coupling of 1-QP (one-quasiparticle) and 3-QP components and find a number of long-living resonance structures close to the particle threshold. Results for 15C are compared with experimental data, showing that the experimentally observed spectral distribution and the interference pattern are in qualitative agreement with a BSEC interpretation.
We present ab initio calculations of resonances for $^7$He, a nucleus with no bound states, using the realistic nucleon-nucleon interaction Daejeon16. For this, we evaluate the $n{-}{^6rm He}$ elastic scattering phase shifts obtained within an $S$-matrix analysis of no-core shell model results for states in the continuum. We predict new broad resonances likely related to fragmentary experimental evidence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا