Do you want to publish a course? Click here

Giant Resonances using Correlated Realistic Interactions: The Case for Second RPA

215   0   0.0 ( 0 )
 Added by P. Papakonstantinou
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

Lately we have been tackling the problem of describing nuclear collective excitations starting from correlated realistic nucleon-nucleon (NN) interactions. The latter are constructed within the Unitary Correlation Operator Method (UCOM), starting from realistic NN potentials. It has been concluded that first-order RPA with a two-body UCOM interaction is not capable, in general, of reproducing quantitatively the properties of giant resonances (GRs), due to missing higher-order configurations and long-range correlations as well as neglected three-body terms in the Hamiltonian. Here we report results on GRs obtained by employing a UCOM interaction based on the Argonne V18 potential in Second RPA (SRPA) calculations. The same interaction is used to describe the Hartree-Fock (HF) ground state and the residual interactions. We find that the inclusion of second-order configurations -- which effectively dress the underlying HF single-particle states with self-energy insertions -- produces sizable corrections. The effect appears essential for a realistic description of GRs when using the UCOM. We argue that effects of higher than second order should be negligible. Therefore, the UCOM-SRPA emerges as a promising tool for consistent calculations of collective states in closed-shell nuclei. This is an interesting development, given that SRPA can accommodate more physics than RPA (e.g., fragmentation). Remaining discrepancies due to the missing three-body terms and self-consistency issues of the present SRPA model are pointed out.



rate research

Read More

We examine the response of closed-shell nuclei using a correlated interaction, derived with the Unitary Correlation Operator Method (UCOM) from the Argonne V18 potential, in second RPA (SRPA) calculations. The same correlated two-body interaction is used to derive the Hartree-Fock ground state and the SRPA equations. Our results show that the coupling of particle-hole states to higher-order configurations produces sizable effects compared with first-order RPA. A much improved description of the isovector dipole and isoscalar quadrupole resonances is obtained, thanks in part to the more fundamental treatment of the nucleon effective mass offered by SRPA. The present work suggests the prospect of describing giant resonance properties realistically and consistently within extended RPA theories. Self-consistency issues of the present SRPA method and residual three-body effects are pointed out.
107 - S. Peru , J.F. Berger , 2005
Theoretical results for giant resonances in the three doubly magic exotic nuclei $^{78}$Ni, $^{100}$Sn and $^{132}$Sn are obtained from Hartree-Fock (HF) plus Random Phase Approximation (RPA) calculations using the D1S parametrization of the Gogny two-body effective interaction. Special attention is paid to full consistency between the HF field and the RPA particle-hole residual interaction. The results for the exotic nuclei, on average, appear similar to those of stable ones, especially for quadrupole and octupole states. More exotic systems have to be studied in order to confirm such a trend. The low energy of the monopole resonance in $^{78}$Ni suggests that the compression modulus in this neutron rich nucleus is lower than the one of stable ones.
A finite rank separable approximation for the quasiparticle RPA with Skyrme interactions is applied to study the low lying quadrupole and octupole states in some S isotopes and giant resonances in some spherical nuclei. It is shown that characteristics calculated within the suggested approach are in a good agreement with available experimental data.
A finite rank separable approximation for the particle-hole RPA calculations with Skyrme interactions is extended to take into account the pairing. As an illustration of the method energies and transition probabilities for the quadrupole and octupole excitations in some O, Ar, Sn and Pb isotopes are calculated. The values obtained within our approach are very close to those that were calculated within QRPA with the full Skyrme interaction. They are in reasonable agreement with experimental data.
156 - C.Barbieri 2006
The self-consistent random phase approximation (RPA) based on a correlated realistic nucleon-nucleon interaction is used to evaluate correlation energies in closed-shell nuclei beyond the Hartree-Fock level. The relevance of contributions associated with charge exchange excitations as well as the necessity to correct for the double counting of the second order contribution to the RPA ring summation are emphasized. Once these effects are properly accounted for, the RPA ring summation provides an efficient tool to assess the impact of long-range correlations on binding energies throughout the whole nuclear chart, which is of particular importance when starting from realistic interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا