No Arabic abstract
We consider the reaction g+d -> pi+d in a wide energy range around and above the eta-meson photoproduction threshold at backward CM angles of the outgoing pion. Our theoretical analysis is essentially motivated by the recent measurements of the CLAS Collaboration at Jefferson Lab, where this kinematical region of the reaction has been thoroughly studied for the first time and a cusps in the energy dependence of the differential cross section in the region of Eg = 600-800 MeV has been observed. Our preliminary and qualitative analysis, based on single- and double-scattering diagrams, shows that the observed structure can be explained by the contribution of the double-scattering diagram with intermediate production of the eta meson. The effect, to a considerable extent, is formed due to the contribution of N(1535) resonance to the amplitudes of subprocesses on the nucleons.
The $eta$ mesic nucleus is considered to be one of the interesting exotic many body systems and has been studied since 1980s theoretically and experimentally. Recently, the formation of the $eta$ mesic nucleus in the fusion reactions of the light nuclei such as $d + d rightarrow (eta + alpha) rightarrow X$ has been proposed and the experiments have been performed by WASA-at-COSY. We develop a theoretical model to evaluate the formation rate of the $eta$ mesic nucleus in the fusion reactions and show the calculated results. We find that the $eta$ bound states could be observed in the reactions in cases with the strong attractive and small absorptive $eta$-nucleus interactions. We compare our results with existing data of the $d + d rightarrow eta + alpha$ and the $d + d rightarrow {^3 rm He} + N + pi$ reactions. We find that the analyses by our theoretical model with the existing data can provide new information on the $eta$-nucleus interaction.
The total cross section of the p d -> p d eta reaction has been measured at two energies near threshold by detecting the final proton and deuteron in a magneti spectrometer. The values are somewhat larger than expected on the basis of two simple theoretical estimates.
The near-threshold n p -> d pi0 cross section is calculated in chiral perturbation theory to next-to-leading order in the expansion parameter sqrt{M m_pi}/Lambda_chi. At this order irreducible pion loops contribute to the relevant pion-production operator. While their contribution to this operator is finite, considering initial-and final-state distortions produces a linear divergence in its matrix elements. We renormalize this divergence by introducing a counterterm, whose value we choose in order to reproduce the threshold n p -> d pi0 cross section measured at TRIUMF. The energy-dependence of this cross section is then predicted in chiral perturbation theory, being determined by the production of p-wave pions, and also by energy dependence in the amplitude for the production of s-wave pions. With an appropriate choice of the counterterm, the chiral prediction for this energy dependence converges well.
We report the first observation of the charge symmetry breaking d + d -> 4He + pi0 reaction near threshold at the Indiana University Cyclotron Facility. Kinematic reconstruction permitted the separation of 4He + pi0 events from double radiative capture 4He + gamma + gamma events. We measured total cross sections for neutron pion production of 12.7 +- 2.2 pb at 228.5 MeV and 15.1 +- 3.1 pb at 231.8 MeV. The uncertainty is dominated by statistical errors.
A model for the p d --> p d eta reaction published earlier, including the final state interaction (FSI) of all particles, is revisited to investigate the low energy data on this reaction. The three body problem of p-d-eta scattering in the final state is approximated in terms of pairwise interactions between the three particles in the final state. Apart from a comparison with some preliminary data, two new findings relevant to the near threshold data analysis are reported. The first one points toward the limitations of an FSI factor used conventionally to extract the eta-deuteron scattering length and infer subsequently on the existence of eta-mesic states. The second result emphasizes the role of the $p-d$ FSI and the strong Coulomb repulsion near threshold. Finally, a comparison of the above model calculation with low energy data, excludes very large eta-nucleon scattering lengths.