Do you want to publish a course? Click here

Effects of in-medium cross-sections and optical potential on thermal-source formation in p+197Au reactions at 6.2-14.6 GeV/c

61   0   0.0 ( 0 )
 Added by Simon Turbide
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

Effects of in-medium cross-sections and of optical potential on pre-equilibrium emission and on formation of a thermal source are investigated by comparing the results of transport simulations with experimental results from the p+{197}Au reaction at 6.2-14.6 GeV/c. The employed transport model includes light composite-particle production and allows for inclusion of in-medium particle-particle cross-section reduction and of momentum dependence in the particle optical-potentials. Compared to the past, the model incorporates improved parameterizations of elementary high-energy processes. The simulations indicate that the majority of energy deposition occurs during the first ~25 fm/c of a reaction. This is followed by a pre-equilibrium emission and readjustment of system density and momentum distribution toward an equilibrated system. Good agreement with data, on the d/p and t/p yield ratios and on the residue mass and charge numbers, is obtained at the time of ~ 65 fm/c from the start of a reaction, provided reduced in-medium cross-sections and momentum-dependent optical potentials are employed in the simulations. By then, the pre-equilibrium nucleon and cluster emission, as well as mean-field readjustments, drive the system to a state of depleted average density, rho/rho_{0} ~ 1/4-1/3 for central collisions, and low-to-moderate excitation, i.e. the region of nuclear liquid-gas phase transition.



rate research

Read More

We explore the influence of in-medium nucleon-nucleon cross section, symmetry potential and impact parameter on isospin sensitive observables in intermediate-energy heavy-ion collisions with the ImQMD05 code, a modified version of Quantum Molecular Dynamics model. At incident velocities above the Fermi velocity, we find that the density dependence of symmetry potential plays a more important role on the double neutron to proton ratio $DR(n/p)$ and the isospin transport ratio $R_i$ than the in-medium nucleon-nucleon cross sections, provided that the latter are constrained to a fixed total NN collision rate. We also explore both $DR(n/p)$ and $R_i$ as a function of the impact parameter. Since the copious production of intermediate mass fragments is a distinguishing feature of intermediate-energy heavy-ion collisions, we examine the isospin transport ratios constructed from different groups of fragments. We find that the values of the isospin transport ratios for projectile rapidity fragments with $Zge20$ are greater than those constructed from the entire projectile rapidity source. We believe experimental investigations of this phenomenon can be performed. These may provide significant tests of fragmentation time scales predicted by ImQMD calculations.
Three typical algorithms of Pauli blocking in the quantum molecular dynamics type models are investigated in the nuclear matter, the nucleus and the heavy ion collisions. The calculations in nuclear matter show that the blocking ratios obtained with the three algorithms are underestimated 13-25% compared to the analytical values of blocking ratios. For the finite nucleus, the spurious collisions occur around the surface of the nucleus owing to the defects of Pauli blocking algorithms. In the simulations of heavy ion collisions, the uncertainty of stopping power from different Pauli blocking algorithms is less than 5%. Furthermore, the in-medium effects of nucleon-nucleon ($NN$) cross sections on the nuclear stopping power are discussed. Our results show that the transport models calculations with free $NN$ cross sections result in the stopping power decreasing with the beam energy at the beam energy less than 300 MeV/u. To increase or decrease the values of stopping power, an enhanced or suppressed model dependent in-medium $NN$ cross section is required.
244 - C. Rizzo , V. Baran , M. Colonna 2010
We investigate the reaction path followed by Heavy Ion Collisions with exotic nuclear beams at low energies. We will focus on the interplay between reaction mechanisms, fusion vs. break-up (fast-fission, deep-inelastic), that in exotic systems is expected to be influenced by the symmetry energy term at densities around the normal value. The evolution of the system is described by a Stochastic Mean Field transport equation (SMF), where two parametrizations for the density dependence of symmetry energy (Asysoft and Asystiff) are implemented, allowing one to explore the sensitivity of the results to this ingredient of the nuclear interaction. The method described here, based on the event by event evolution of phase space quadrupole collective modes will nicely allow to extract the fusion probability at relatively early times, when the transport results are reliable. Fusion probabilities for reactions induced by 132Sn on 64,58Ni targets at 10 AMeV are evaluated. We obtain larger fusion cross sections for the more n-rich composite system, and, for a given reaction, in the Asysoft choice. Finally a collective charge equilibration mechanism (the Dynamical Dipole) is revealed in both fusion and break-up events, depending on the stiffness of the symmetry term just below saturation.
The cross sections of the nuclear reactions induced by neutrons at $E_n$= 14.6 MeV on the isotopes of Dy, Er, Yb with emission of neutrons, proton and alpha-particle are studied by the use of new experimental data and different theoretical approaches. New and improved experimental data are measured by the neutron-activation technique. The experimental and evaluated data from EXFOR, TENDL, ENDF libraries are compared with different systematics and calculations by codes of EMPIRE~3.0 and TALYS~1.2. Contribution of pre-equilibrium decay is discussed. Different systematics for estimations of the cross-sections of considered nuclear reactions are tested.
We use a three-body Continuum Discretized Coupled Channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term, and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation, and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li + 208Pb. For breakup, we investigate various aspects, such as the role of the alpha + t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the Coulomb and nuclear breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest a third method which could be efficiently used to address convergence problems at large angular momentum. For reaction cross sections, interference effects are smaller, and the nuclear contribution is dominant above the Coulomb barrier. We also draw attention on different definitions of the reaction cross section which exist in the literature, and which may induce small, but significant, differences in the numerical values.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا