Do you want to publish a course? Click here

In-medium vector meson masses in a Chiral SU(3) model

66   0   0.0 ( 0 )
 Added by ul
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

A significant drop of the vector meson masses in nuclear matter is observed in a chiral SU(3) model due to the effects of the baryon Dirac sea. This is taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree approximation. The appreciable decrease of the in-medium vector meson masses is due to the vacuum polarisation effects from the nucleon sector and is not observed in the mean field approximation.



rate research

Read More

128 - T. Hyodo 2002
We examine flavor SU(3) breaking effects on meson-baryon scattering amplitudes in the chiral unitary model. It turns out that the SU(3) breaking, which appears in the leading quark mass term in the chiral expansion, can not explain the channel dependence of the subtraction parameters of the model, which are crucial to reproduce the observed scattering amplitudes and resonance properties.
We discuss the vector meson masses within the context of Chiral Perturbation Theory performing an expansion in terms of the momenta, quark masses and 1/Nc. We extend the previous analysis to include isospin breaking effects and also include up to order $p^4$. We discuss vector meson chiral perturbation theory in some detail and present a derivation from a relativistic lagrangian. The unknown coefficients are estimated in various ways. We also discuss the relevance of electromagnetic corrections and the implications of the present calculation for the determination of quark masses.
The space-time dynamics and pion-HBT radii in central heavy ion-collisions at CERN-SPS and BNL-RHIC are investigated within a hydrodynamic simulation. The dependence of the dynamics and the HBT-parameters on the EoS is studied with different parametrisations of a chiral SU(3) sigma-omega model. The selfconsistent collective expansion includes the effects of effective hadron masses, generated by the nonstrange and strange scalar condensates. Different chiral EoS show different types of phase transitions and even a crossover. The influence of the order of the phase transition and of the difference in the latent heat on the space-time dynamics and pion-HBT radii is studied. A small latent heat, i.e. a weak first-order chiral phase transition, or even a smooth crossover leads to distinctly different HBT predictions than a strong first order phase transition. A quantitative description of the data, both at SPS energies as well as at RHIC energies, appears difficult to achieve within the ideal hydrodynamical approach using the SU(3) chiral EoS. A strong first-order quasi-adiabatic chiral phase transition seems to be disfavored by the pion-HBT data from CERN-SPS and BNL-RHIC.
Inclusive hadro production in e^+ e^- annihilation processes is examined to study the fragmentation process. A broken SU(3) model is used to determine the quark and gluon fragmentation functions of octet vector mesons, rho and K^*, in a simple way with an SU(3) breaking parameter lambda. These are expressed in terms of just two light quark fragmentation functions, V(x, Q2) and gamma(x, Q2) and the gluon fragmentation function Dg(x, Q2). These functions are parameterized at the low input scale of Q0^2 = 1.5 GeV2, evolved through LO DGLAP evolution including charm and bottom flavour at appropriate thresholds, and fitted by comparison with data at the Z-pole. The model is extended with the introduction of a few additional parameters to include a study of singlet--octet mixing and hence omega and phi fragmentation. The model gives good fits to the available data for x >~ 0.01, where x is the scaled energy of the hadron. The model is then applied successfully to omega, phi production in pp collisions at the Relativistic Heavy Ion Collider, RHIC; these data form an important base-line for the study of Quark Gluon Plasma in heavy nucleus collisions at RHIC, and also in future at the LHC.
82 - T. Hyodo 2003
We study s-wave meson-baryon scattering using the chiral unitary model. We consider $1/2^{-}$ baryon resonances as quasibound states of the low lying mesons ($pi,K,eta$) and baryons ($N,Lambda,Sigma,Xi$). In previous works, the subtraction constants which appear in loop integrals were found to largely depend on the channels, and it was necessary to fit these constants to reproduce the data. In order to extend this model to all channels with fewer parameters, we introduce flavor SU(3) breaking interactions in the framework of chiral perturbation theory. It is found, however, that the observed SU(3) breaking in meson-baryon scattering cannot be explained by the present SU(3) breaking interactions. The role and importance of the subtraction constants in the present framework are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا