Do you want to publish a course? Click here

Search for Quadrupole Strength in the Electro-excitation of the Delta(1232)

58   0   0.0 ( 0 )
 Added by Christoph Mertz
 Publication date 1999
  fields
and research's language is English




Ask ChatGPT about the research

High-precision H(e,ep)pi0 measurements at Q2=0.126 (GeV/c)2 are reported, which allow the determination of quadrupole amplitudes in the gamma* N->Delta transition; they simultaneously test the reliability of electroproduction models. The derived quadrupole-to-dipole amplitude ratios, Rsm=(-6.5 +- 0.2{stat+sys} +- 2.5{mod}) % and Rem=(-2.1 +- 0.2{stat+sys} +- 2.0{mod}) %, are dominated by model error. Previous Rsm and Rem results should be reconsidered after the model uncertainties associated with the method of their extraction are taken into account.

rate research

Read More

The E2/M1 ratio (EMR) of the $Delta$(1232) is extracted from the world data in pion photoproduction by means of an Effective Lagrangian Approach (ELA).This quantity has been derived within a crossing symmetric, gauge invariant, and chiral symmetric Lagrangian model which also contains a consistent modern treatment of the $Delta$(1232) resonance. The textit{bare} s-channel $Delta$(1232) contribution is well isolated and Final State Interactions (FSI) are effectively taken into account fulfilling Watsons theorem. The obtained EMR value, EMR$=(-1.30pm0.52)$%, is in good agreement with the latest lattice QCD calculations [Phys. Rev. Lett. 94, 021601 (2005)] and disagrees with results of current quark model calculations.
We report on new p$(e,e^prime p)pi^circ$ measurements at the $Delta^{+}(1232)$ resonance at the low momentum transfer region. The mesonic cloud dynamics is predicted to be dominant and rapidly changing in this kinematic region offering a test bed for chiral effective field theory calculations. The new data explore the low $Q^2$ dependence of the resonant quadrupole amplitudes while extending the measurements of the Coulomb quadrupole amplitude to the lowest momentum transfer ever reached. The results disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The reported measurements suggest that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements.
We calculate the electromagnetic moments and radii of the Delta(1232) in the nonrelativistic quark model, including two-body exchange currents. We show that two-body exchange currents lead to nonvanishing Delta and N-->Delta transition quadrupole moments even if the wave functions have no D-state admixture. The usual explanation based on the single-quark transition model involves D-state admixtures but no exchange currents. We derive a parameter- free relation between the N-->Delta transition quadrupole moment and the neutron charge radius: Q(N-->Delta) = r^2(neutron)/sqrt(2). Furthermore, we calculate the M1 and E2 amplitudes for the process photon + N -->Delta. We find that the E2 amplitude receives sizeable contributions from exchange currents. These are more important than the ones which result from D-state admixtures due to tensor forces between quarks if a reasonable quark core radius of about 0.6 fm is used. We obtain a ratio of E2/M1=-3.5%.
We report new p$(vec{e},e^prime p)pi^circ$ measurements in the $Delta^{+}(1232)$ resonance at the low momentum transfer region utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The mesonic cloud dynamics are predicted to be dominant and appreciably changing in this region while the momentum transfer is sufficiently low to be able to test chiral effective calculations. The results disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations with pion cloud effects, chiral effective field theory and lattice calculations. The reported measurements suggest that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements.
For the first time, the total yield and inclusive spectra of the $Delta^{++}(1232)$isobar are measured in $ u p$ and $ u n$ charged-current interactions. An indication is obtained that the $Delta^{++}(1232)$ production mainly results from the neutrino scattering on the valence d- quark of the target nucleon. The total yield of $Delta^{++}(1232)$ in $ u p$ interactions is compatible with that measured in hadronic interactions of the same net charge and net baryonic number. The yield of $Delta^{++}(1232)$ in $ u n$ interactions is significantly suppressed as compared to the case of the proton target. The form of the squared transverse momentum distributions, both in $ u p$ and $ u n$ interactions, is found to be compatible with the available data on the neutrinoproduction of $Lambda$ hyperon. The experimental data are compared with the LEPTO6.5 model predictions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا