Do you want to publish a course? Click here

New insight into the low-energy $^9$He spectrum

81   0   0.0 ( 0 )
 Added by Leonid Grigorenko
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

The spectrum of $^9$He was studied by means of the $^8$He($d$,$p$)$^9$He reaction at a lab energy of 25 MeV/n and small center of mass (c.m.) angles. Energy and angular correlations were obtained for the $^9$He decay products by complete kinematical reconstruction. The data do not show narrow states at $sim $1.3 and $sim $2.4 MeV reported before for $^9$He. The lowest resonant state of $^9$He is found at about 2 MeV with a width of $sim $2 MeV and is identified as $1/2^-$. The observed angular correlation pattern is uniquely explained by the interference of the $1/2^-$ resonance with a virtual state $1/2^+$ (limit on the scattering length is obtained as $a > -20$ fm), and with the $5/2^+$ resonance at energy $geq 4.2$ MeV.



rate research

Read More

Search for the neutron-rich hypernucleus 9LHe is reported by the FINUDA experiment at DAFNE, INFN-LNF, studying (pi+, pi-) pairs in coincidence from the K-stop + 9Be --> 9LHe + pi+ production reaction followed by 9LHe --> 9Li + pi- weak decay. An upper limit of the production rate of 9LHe undergoing this two-body pi- decay is determined to be (2.3 +/- 1.9) 10-6/K-stop at 90% confidence level.
The level structure of the very neutron rich and unbound $^9$He nucleus has been the subject of significant experimental and theoretical study. Many recent works have claimed that the two lowest energy $^9$He states exist with spins $J^pi=1/2^+$ and $J^pi=1/2^-$ and widths on the order of hundreds of keV. These findings cannot be reconciled with our contemporary understanding of nuclear structure. The present work is the first high-resolution study with low statistical uncertainty of the relevant excitation energy range in the $^8$He$+n$ system, performed via a search for the T=5/2 isobaric analog states in $^9$Li populated through $^8$He+p elastic scattering. The present data show no indication of any narrow structures. Instead, we find evidence for a broad $J^{pi}=1/2^+$ state in $^9$He located approximately 3 MeV above the neutron decay threshold.
170 - S.M. Lukyanov 2015
The study of inelastic scattering and multi-nucleon transfer reactions was performed by bombarding a $^{9}$Be target with a $^3$He beam at an incident energy of 30 MeV. Angular distributions for $^9$Be($^3$He,$^3$He)$^{9}$Be, $^9$Be($^3$He,$^4$He)$^{8}$Be, $^9$Be($^3$He,$^5$He)$^{7}$Be, $^9$Be($^3$He,$^6$Li)$^6$Li and $^9$Be($^3$He,$^5$Li)$^7$Li reaction channels were measured. Experimental angular distributions for the corresponding ground states (g.s.) were analysed within the framework of the optical model, the coupled-channel approach and the distorted-wave Born approximation. Cross sections for channels leading to unbound $^5$He$_{g.s.}$, $^5$Li$_{g.s.}$ and $^8$Be systems were obtained from singles measurements where the relationship between the energy and the scattering angle of the observed stable ejectile is constrained by two-body kinematics. Information on the cluster structure of $^{9}$Be was obtained from the transfer channels. It was concluded that cluster transfer is an important mechanism in the investigated nuclear reactions. In the present work an attempt was made to estimate the relative strengths of the interesting $^8$Be+$n$ and $^5$He+$alpha$ cluster configurations in $^9$Be. The branching ratios have been determined confirming that the $^5$He+$alpha$ configuration plays an important role. The configuration of $^9$Be consisting of two bound helium clusters $^3$He+$^6$He is significantly suppressed, whereas the two-body configurations ${}^{8}$Be+$n$ and ${}^{5}$He+$alpha$ including unbound $^8$Be and $^5$He are found more probable.
145 - W. H. Ma , J. S. Wang , D. Patel 2017
$^{6}$He+$t$ cluster states of exited $^{9}$Li have been measured by 32.7 MeV/nucleon $^{9}$Li beams bombarding on $^{208}$Pb target. Two resonant states are clearly observed with the excitation energies at 9.8 MeV and 12.6 MeV and spin-parity of 3/2$^{-}$ and 7/2$^{-}$ respectively. These two states are considered to be members of K$^{pi}$=1/2$^{-}$ band. The spin-parity of them are identified by the method of angular correlation analysis and verified by the continuum discretized coupled channels (CDCC) calculation, which agrees with the prediction of the generator coordinate method (GCM). A monopole matrix element about 4 fm$^{2}$ for the 3/2$^{-}$ state is extracted from the distorted wave Born approximation (DWBA) calculation. These results strongly support the feature of clustering structure of two neutron-rich clusters in the neutron-rich nucleus $^{9}$Li for the first time.
The two-body photodisintegration of $^4$He into a proton and a triton has been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at Jefferson Laboratory. Real photons produced with the Hall-B bremsstrahlung-tagging system in the energy range from 0.35 to 1.55 GeV were incident on a liquid $^4$He target. This is the first measurement of the photodisintegration of $^4$He above 0.4 GeV. The differential cross sections for the $gamma$$^4$He$to pt$ reaction have been measured as a function of photon-beam energy and proton-scattering angle, and are compared with the latest model calculations by J.-M. Laget. At 0.6-1.2 GeV, our data are in good agreement only with the calculations that include three-body mechanisms, thus confirming their importance. These results reinforce the conclusion of our previous study of the three-body breakup of $^3$He that demonstrated the great importance of three-body mechanisms in the energy region 0.5-0.8 GeV .
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا