Do you want to publish a course? Click here

Photodisintegration of $^4$He into p+t

493   0   0.0 ( 0 )
 Added by Rakhsha Nasseripour
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

The two-body photodisintegration of $^4$He into a proton and a triton has been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at Jefferson Laboratory. Real photons produced with the Hall-B bremsstrahlung-tagging system in the energy range from 0.35 to 1.55 GeV were incident on a liquid $^4$He target. This is the first measurement of the photodisintegration of $^4$He above 0.4 GeV. The differential cross sections for the $gamma$$^4$He$to pt$ reaction have been measured as a function of photon-beam energy and proton-scattering angle, and are compared with the latest model calculations by J.-M. Laget. At 0.6-1.2 GeV, our data are in good agreement only with the calculations that include three-body mechanisms, thus confirming their importance. These results reinforce the conclusion of our previous study of the three-body breakup of $^3$He that demonstrated the great importance of three-body mechanisms in the energy region 0.5-0.8 GeV .



rate research

Read More

The low-lying spectra of $^8$He and $^{10}$He nuclei were studied in the $^3$H($^6$He,$p$)$^8$He and $^3$H($^8$He,$p$)$^{10}$He transfer reactions. The $0^+$ ground state (g.s.) of $^8$He and excited states, $2^+$ at $3.6-3.9$ MeV and $(1^+)$ at $5.3-5.5$ MeV, were populated with cross sections of 200, 100-250, and 90-125 $mu$b/sr, respectively. Some evidence for $^8$He state at about 7.5 MeV is obtained. We discuss a possible nature of the near-threshold anomaly above 2.14 MeV in $^8$He and relate it to the population of a $1^-$ continuum (soft dipole excitation) with peak value at about 3 MeV. The lowest energy group of events in the $^{10}$He spectrum was observed at $sim 3$ MeV with a cross section of $sim 140$ $mu$b/sr. We argue that this result is possibly consistent with the previously reported observation of $^{10}$He, in that case providing a new g.s. position for $^{10}$He at about 3 MeV.
{it Ab initio} calculation of the total cross section for the reactions $^{4}rm{He}(gamma,p)^3rm{H}$ and $^{4}rm{He}(gamma,n)^3rm{He}$ is presented, using state-of-the-art nuclear forces. The Lorentz integral transform (LIT) method is applied, which allows exact treatment of the final state interaction (FSI). The dynamic equations are solved using the effective interaction hyperspherical harmonics (EIHH) method. In this calculation of the cross sections the three-nucleon force is fully taken into account, except in the source term of the LIT equation for the FSI transition matrix element.
Polarization transfer in the 4He(e,ep)3H reaction at a Q^2 of 0.4 (GeV/c)^2 was measured at the Mainz Microtron MAMI. The ratio of the transverse to the longitudinal polarization components of the ejected protons was compared with the same ratio for elastic ep scattering. The results are consistent with a recent fully relativistic calculation which includes a predicted medium modification of the proton form factor based on a quark-meson coupling model.
In explosive stellar environments like supernovae, the temperatures are high enough for the production of heavy neutron-deficient nuclei, the socalled p-nuclei. Up to now, the knowledge of the reaction rates of p-nuclei is based on theoretical parameterizations using statistical model calculations. At the bremsstrahlung facility of the superconducting electron accelerator ELBE of FZ Dresden-Rossendorf, we aim to measure the photodisintegration rates of heavy nuclei experimentally. Photoactivation measurements on the astrophysically relevant p-nuclei 92Mo and 144Sm have been performed with bremsstrahlung end-point energies from 10.0 to 16.5 MeV. First experiments on the short-lived decays following the reaction 144Sm(gamma,n) are carried out using a pneumatic delivery system for rapid transport of activated samples. The activation yields are compared with calculations using cross sections from recent Hauser-Feshbach models.
278 - E.Ihara , T.Wakasa , M.Dozono 2008
The cross-sections and analyzing powers for $(p,n)$ reactions on ${}^{3}{rm He}$ and ${}^{4}{rm He}$ have been measured at a bombarding energy of $T_p$ = 346 MeV and reaction angles of $theta_{rm lab}$ = $9.4^{circ}$--$27^{circ}$. The energy transfer spectra for ${}^{3}{rm He}(p,n)$ at large $theta_{rm lab}$ ($ge$ $16^{circ}$) are dominated by quasielastic contributions, and can be reasonably reproduced by plane-wave impulse approximation (PWIA) calculations for quasielastic scattering. By contrast, the known $L$ = 1 resonances in ${}^{4}{rm Li}$ are clearly observed near the threshold in the ${}^{4}{rm He}(p,n)$ spectra. Because these contributions are remarkable at small angles, the energy spectra are significantly different from those expected for quasielastic scattering. The data are compared with the PWIA calculations, and it is found that the quasielastic contributions are dominant at large $theta_{rm lab}$ ($ge$ $22^{circ}$). The nuclear correlation effects on the quasielastic peak for ${}^{4}{rm He}(p,n)$ are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا