Do you want to publish a course? Click here

Breakup of loosely bound nuclei as indirect method in nuclear astrophysics: 8B, 9C, 23Al

84   0   0.0 ( 0 )
 Added by Livius Trache
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the use of one-nucleon breakup reactions of loosely bound nuclei at intermediate energies as an indirect method in nuclear astrophysics. These are peripheral processes, therefore we can extract asymptotic normalization coefficients (ANC) from which reaction rates of astrophysical interest can be inferred. To show the usefulness of the method, three different cases are discussed. In the first, existing experimental data for the breakup of 8B at energies from 30 to 1000 MeV/u and of 9C at 285 MeV/u on light through heavy targets are analyzed. Glauber model calculations in the eikonal approximation and in the optical limit using different effective interactions give consistent, though slightly different results, showing the limits of the precision of the method. The results lead to the astrophysical factor S_17(0)=18.7+/-1.9 eVb for the key reaction for solar neutrino production 7Be(p,gamma)8B. It is consistent with the values from other indirect methods and most direct measurements, but one. Breakup reactions can be measured with radioactive beams as weak as a few particles per second, and therefore can be used for cases where no direct measurements or other indirect methods for nuclear astrophysics can be applied. We discuss a proposed use of the breakup of the proton drip line nucleus 23Al to obtain spectroscopic information and the stellar reaction rate for 22Mg(p,gamma)23Al.



rate research

Read More

The astrophysical factor of the 8B(p,gamma)9C at zero energy, S18(0), is determined from three-body model analysis of 9C breakup processes. The elastic breakup 208Pb(9C,p8B)208Pb at 65 MeV/nucleon and the one-proton removal reaction of 9C at 285 MeV/nucleon on C and Al targets are calculated with the continuum-discretized coupled-channels method (CDCC) and the eikonal reaction theory (ERT), respectively. The asymptotic normalization coefficient (ANC) of 9C in the p-8B configuration extracted from the two reactions show good consistency, in contrast to in the previous studies. As a result of the present analysis, S18(0) = 66 pm 10 eVb is obtained.
This paper follows the inaugural talk one of the authors (LT) gave at the opening of the ECT* workshop with the same title, which he co-organized in Trento, Italy, November 5-9, 2018. As such it follows the ideas expressed there, which were to out-line the discussions that the organizers intended for that meeting. Therefore, the paper will review the indirect methods in nuclear astrophysics, their use and their specific problems, old and new, the need to further developments rather than giving complete treatments of each method or reviewing exhaustively the existing literature. The workshop was from its inception aiming also at reviewing the status of the field of nuclear astrophysics and its connections with adjacent branches of physics. Some lines on these are included here.
254 - Tokuro Fukui , Kazuyuki Ogata , 2014
The astrophysical factor of $^8$B($p$,$gamma$)$^9$C at zero energy, $S_{18}(0)$, is determined by a three-body coupled-channels analysis of the transfer reaction $^{8}$B($d$,$n$)$^{9}$C at 14.4 MeV/nucleon. Effects of the breakup channels of $d$ and $^9$C are investigated with the continuum-discretized coupled-channels method. It is found that, in the initial and final channels, respectively, the transfer process through the breakup states of $d$ and $^9$C, its interference with that through their ground states in particular, gives a large increase in the transfer cross section. The finite-range effects with respect to the proton-neutron relative coordinate are found to be about 20%. As a result of the present analysis, $S_{18}(0)=22 pm 6~{rm eV~b}$ is obtained, which is smaller than the result of the previous distorted-wave Born approximation analysis by about 51%.
In this paper we develop an analytical model in order to study electromagnetic processes involving loosely bound neutron--rich and proton--rich nuclei. We construct a model wave function, to describe loosely bound few--body systems, having the correct behaviour both at large and small distances. The continuum states are approximated by regular Coulomb functions. As a test case we consider the two--body Coulomb dissociation of 8B and, the inverse, radiative capture reaction. The difference between using a pure two--body model and the results obtained when incorporating many--body effects, is investigated. We conclude that the interpretation of experimental data is highly model dependent and stress the importance of measuring few--body channels.
A study of the interaction of loosely bound nuclei 6,7Li at 9 and 19 AMeV with light targets has been undertaken. With the determination of unambiguous optical potentials in mind, elastic data for four projectile-target combinations and one neutron transfer reaction 13C(7Li,8Li)12C have been measured on a large angular range. The kinematical regime encompasses a region where the mean field (optical potential) has a marked variation with mass and energy, but turns out to be sufficiently surface transparent to allow strong refractive effects to be manifested in elastic scattering data at intermediate angles. The identified exotic feature, a plateau in the angular distributions at intermediate angles, is fully confirmed in four reaction channels and interpreted as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier farside scattering subamplitudes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا