No Arabic abstract
A study of the interaction of loosely bound nuclei 6,7Li at 9 and 19 AMeV with light targets has been undertaken. With the determination of unambiguous optical potentials in mind, elastic data for four projectile-target combinations and one neutron transfer reaction 13C(7Li,8Li)12C have been measured on a large angular range. The kinematical regime encompasses a region where the mean field (optical potential) has a marked variation with mass and energy, but turns out to be sufficiently surface transparent to allow strong refractive effects to be manifested in elastic scattering data at intermediate angles. The identified exotic feature, a plateau in the angular distributions at intermediate angles, is fully confirmed in four reaction channels and interpreted as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier farside scattering subamplitudes.
We discuss the use of one-nucleon breakup reactions of loosely bound nuclei at intermediate energies as an indirect method in nuclear astrophysics. These are peripheral processes, therefore we can extract asymptotic normalization coefficients (ANC) from which reaction rates of astrophysical interest can be inferred. To show the usefulness of the method, three different cases are discussed. In the first, existing experimental data for the breakup of 8B at energies from 30 to 1000 MeV/u and of 9C at 285 MeV/u on light through heavy targets are analyzed. Glauber model calculations in the eikonal approximation and in the optical limit using different effective interactions give consistent, though slightly different results, showing the limits of the precision of the method. The results lead to the astrophysical factor S_17(0)=18.7+/-1.9 eVb for the key reaction for solar neutrino production 7Be(p,gamma)8B. It is consistent with the values from other indirect methods and most direct measurements, but one. Breakup reactions can be measured with radioactive beams as weak as a few particles per second, and therefore can be used for cases where no direct measurements or other indirect methods for nuclear astrophysics can be applied. We discuss a proposed use of the breakup of the proton drip line nucleus 23Al to obtain spectroscopic information and the stellar reaction rate for 22Mg(p,gamma)23Al.
We present the results of a search for optical model potentials for use in the description of elastic scattering and transfer reactions involving stable and radioactive p-shell nuclei. This was done in connection with our program to use transfer reactions to obtain data for nuclear astrophysics, in particular for the determination of the astrophysical S_17 factor for 7Be(p,gamma)8B using two (7Be,8B) proton transfer reactions. Elastic scattering was measured using 7Li, 10B, 13C and 14N projectiles on 9Be and 13C targets at or about E/A=10 MeV/nucleon. Woods-Saxon type optical model potentials were extracted and are compared with potentials obtained from a microscopic double folding model. We use these results to find optical model potentials for unstable nuclei with emphasis on the reliability of the description they provide for peripheral proton transfer reactions. We discuss the uncertainty introduced by the procedure in the prediction of the DWBA cross sections for the (7Be,8B) reactions used in extracting the astrophysical factor S_17(0).
The experimental data on the $^{16}$O$+^{12}$C and $^{18}$O$+^{12}$C elastic scatterings and their optical model analysis are presented. Detailed and complete elastic angular distributions have been measured at the Strasbourg Vivitron accelerator at several energies covering the energy range between 5 and 10 MeV per nucleon. The elastic scattering angular distributions show the usual diffraction pattern and also, at larger angles, refractive effects in the form of nuclear rainbow and associated Airy structures. The optical model analysis unambiguously shows the evolution of the refractive scattering pattern. The observed structure, namely the Airy minima, can be consistently described by a nucleus-nucleus potential with a deep real part and a weakly absorptive imaginary part. The difference in absorption in the two systems is explained by an increased imaginary (mostly surface) part of the potential in the $^{18}$O$+^{12}$C system. The relation between the obtained potentials and those reported for the symmetrical $^{16}$O$+^{16}$O and $^{12}$C$+^{12}$C systems is drawn.
In this paper we develop an analytical model in order to study electromagnetic processes involving loosely bound neutron--rich and proton--rich nuclei. We construct a model wave function, to describe loosely bound few--body systems, having the correct behaviour both at large and small distances. The continuum states are approximated by regular Coulomb functions. As a test case we consider the two--body Coulomb dissociation of 8B and, the inverse, radiative capture reaction. The difference between using a pure two--body model and the results obtained when incorporating many--body effects, is investigated. We conclude that the interpretation of experimental data is highly model dependent and stress the importance of measuring few--body channels.
Electromagnetic processes in loosely bound nuclei are investigated using an analytical model. In particular, electromagnetic dissociation of $^8$B is studied and the results of our analytical model are compared to numerical calculations based on a three-body picture of the $^8$B bound state. The calculation of energy spectra is shown to be strongly model dependent. This is demonstrated by investigating the sensitivity to the rms intercluster distance, the few-body behavior, and the effects of final state interaction. In contrast, the fraction of the energy spectrum which can be attributed to E1 transitions is found to be almost model independent at small relative energies. This finding is of great importance for astrophysical applications as it provides us with a new tool to extract the E1 component from measured energy spectra. An additional, and independent, method is also proposed as it is demonstrated how two sets of experimental data, obtained with different beam energy and/or minimum impact parameter, can be used to extract the E1 component.