Do you want to publish a course? Click here

AA versus pp and dA: A puzzling scaling in HBT@RHIC

88   0   0.0 ( 0 )
 Added by Mike Lisa
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

No English abstract



rate research

Read More

104 - David J. Hofman 2004
Results on charged particle production in p+p, d+Au and Au+Au collisions at RHIC energies (sqrt(s_NN) = 19.6 to 200 GeV) are presented. The data exhibit remarkable, and simple, scaling behaviors, the most prominent of which are discussed.
64 - R. Schicker 2016
The ALICE experiment at the Large Hadron Collider (LHC) at CERN is optimized for recording events in the very large particle multiplicity environment of heavy-ion collisions at LHC energies. The ALICE collaboration has taken data in Pb-Pb collisions in Run I and Run II at nucleon-nucleon center-of-mass energies $sqrt{s_{text{NN}}}$ = 2.76 and mbox{5.02 TeV}, respectively, and in pp collisions at center-of-mass energies $sqrt{s}$ = 0.9, 2.76, 5.02, 7, 8 and 13 TeV. The asymmetric system p-Pb was measured at a center-of-mass energy $sqrt{s_{text{NN}}}$ = 5.02 TeV. Selected physics results from the analysis of these data are presented, and an outline of the ALICE prospects for Run III is given.
We describe RHIC pion data in central A+A collisions and make predictions for LHC based on hydro-kinetic model, describing continuous 4D particle emission, and initial conditions taken from Color Glass Condensate (CGC) model.
77 - Min He , Ralf Rapp 2020
Recent measurements of various charm-hadron ratios in $pp$, $p$-Pb and Pb-Pb collisions at the LHC have posed challenges to the theoretical understanding of heavy-quark hadronization. The $Lambda_c/D^0$ ratio in $pp$ and $p$-Pb collisions shows larger values than those found in $e^+e^-$ and $ep$ collisions and predicted by Monte-Carlo event generators based on string fragmentation, at both low and intermediate transverse momenta ($p_T$). In AA collisions, the $D_s/D$ ratio is significantly enhanced over its values in $pp$, while the $Lambda_c/D^0$ data indicates a further enhancement at intermediate $p_T$. Here, we report on our recent developments for a comprehensive description of the charm hadrochemistry and transport in $pp$ and $AA$ collisions. For $pp$ collisions we find that the discrepancy between the $Lambda_c/D^0$ data and model predictions is much reduced by using a statistical hadronization model augmented by a large set of missing states in the charm-baryon spectrum, contributing to the $Lambda_c$ via decay feeddown. For $AA$ collisions, we develop a 4-momentum conserving resonance recombination model for charm-baryon formation implemented via event-by-event simulations that account for space-momentum correlations (SMCs) in transported charm- and thermal light-quark distributions. The SMCs, together with the augmented charm-baryon states, are found to play an important role in describing the baryon-to-meson enhancement at intermediate momenta. We emphasize the importance of satisfying the correct (relative) chemical equilibrium limit when computing the charm hadrochemistry and its momentum dependence with coalescence models.
68 - Haidong Liu 2006
We compiled the systematical measurements of anti-nucleus production in ultra-relativistic heavy ion collisions as well as those in $pp$, $pbar{p}$, $gamma p$ and $e^{+}e^{-}$ at various beam energies. The anti-baryon phase space density inferred from $bar{d}/bar{p}$ ratio in $A+A$, $p+A$, $pp(bar{p})$ and $gamma p$ collisions is found to follow a universal distribution as a function of center of mass of beam energy and can be described in a statistical model. We demonstrated that anti-baryon density in all the collisions is the highest when the collisions are dominated by the processes of $g+g$ or $bar{q}+g$. In $e^+e^-$ collisions at LEP, the cross section of $qbar{q}g$ is suppressed by a factor of strong coupling constant $alpha_s$ relative to $qbar{q}$. This can consistently explain the $bar{d}$ suppression observed by ALEPH relative to that in $e^+e^-to ggg$ by ARGUS. We discuss the implications to the baryon enhancement at high transverse momentum at RHIC when jet is quenched.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا