Do you want to publish a course? Click here

Overview of ALICE results in pp, pA and AA collisions

65   0   0.0 ( 0 )
 Added by Rainer Schicker M
 Publication date 2016
  fields
and research's language is English
 Authors R. Schicker




Ask ChatGPT about the research

The ALICE experiment at the Large Hadron Collider (LHC) at CERN is optimized for recording events in the very large particle multiplicity environment of heavy-ion collisions at LHC energies. The ALICE collaboration has taken data in Pb-Pb collisions in Run I and Run II at nucleon-nucleon center-of-mass energies $sqrt{s_{text{NN}}}$ = 2.76 and mbox{5.02 TeV}, respectively, and in pp collisions at center-of-mass energies $sqrt{s}$ = 0.9, 2.76, 5.02, 7, 8 and 13 TeV. The asymmetric system p-Pb was measured at a center-of-mass energy $sqrt{s_{text{NN}}}$ = 5.02 TeV. Selected physics results from the analysis of these data are presented, and an outline of the ALICE prospects for Run III is given.



rate research

Read More

Photoproduction of heavy quarks in ultraperipheral collisions can help elucidate important features of the physics of heavy quarks in Quantum Chromodynamics (QCD). Due to the dependence on parton distributions it can also potentially offer some constraining ability in the determination of nuclear parton distributions. In the present study we consider next-to-leading order (NLO) photoproduction of heavy quarks in ultraperipheral proton-proton (pp), proton-nucleus (pA), and nucleus-nucleus (AA) collisions at the CERN Large Hadron Collider (LHC). Total cross sections and rapidity distributions are considered and the influence of nuclear modifications of parton distributions on these quantities are explored for pA and AA collisions. We find that photoproduction of heavy quarks in PbPb collisions exhibit significant sensitivity to nuclear effects, and in conjunction with photoproduction in pPb collisions, affords good constraining potential for gluon shadowing determination.
Using the CGC formalism, we calculate the two-gluon rapidity correlations of strong colour fields in $pp$, $pA$ and $AA$ collisions, respectively. If one trigger gluon is fixed at central rapidity, a ridge-like correlation pattern is obtained in symmetry $pp$ and $AA$ collisions, and a huge bump-like correlation pattern is presented in asymmetry $pA$ collisions. It is demonstrated that the ridge-like correlation patterns are caused by the stronger correlation with the gluon of colour source. The transverse momentum and incident energy dependence of the ridge-like correlation pattern is also systematically studied. The ridge is more likely observed at higher incident energy and lower transverse momentum of trigger gluon.
68 - Haidong Liu 2006
We compiled the systematical measurements of anti-nucleus production in ultra-relativistic heavy ion collisions as well as those in $pp$, $pbar{p}$, $gamma p$ and $e^{+}e^{-}$ at various beam energies. The anti-baryon phase space density inferred from $bar{d}/bar{p}$ ratio in $A+A$, $p+A$, $pp(bar{p})$ and $gamma p$ collisions is found to follow a universal distribution as a function of center of mass of beam energy and can be described in a statistical model. We demonstrated that anti-baryon density in all the collisions is the highest when the collisions are dominated by the processes of $g+g$ or $bar{q}+g$. In $e^+e^-$ collisions at LEP, the cross section of $qbar{q}g$ is suppressed by a factor of strong coupling constant $alpha_s$ relative to $qbar{q}$. This can consistently explain the $bar{d}$ suppression observed by ALEPH relative to that in $e^+e^-to ggg$ by ARGUS. We discuss the implications to the baryon enhancement at high transverse momentum at RHIC when jet is quenched.
77 - Min He , Ralf Rapp 2020
Recent measurements of various charm-hadron ratios in $pp$, $p$-Pb and Pb-Pb collisions at the LHC have posed challenges to the theoretical understanding of heavy-quark hadronization. The $Lambda_c/D^0$ ratio in $pp$ and $p$-Pb collisions shows larger values than those found in $e^+e^-$ and $ep$ collisions and predicted by Monte-Carlo event generators based on string fragmentation, at both low and intermediate transverse momenta ($p_T$). In AA collisions, the $D_s/D$ ratio is significantly enhanced over its values in $pp$, while the $Lambda_c/D^0$ data indicates a further enhancement at intermediate $p_T$. Here, we report on our recent developments for a comprehensive description of the charm hadrochemistry and transport in $pp$ and $AA$ collisions. For $pp$ collisions we find that the discrepancy between the $Lambda_c/D^0$ data and model predictions is much reduced by using a statistical hadronization model augmented by a large set of missing states in the charm-baryon spectrum, contributing to the $Lambda_c$ via decay feeddown. For $AA$ collisions, we develop a 4-momentum conserving resonance recombination model for charm-baryon formation implemented via event-by-event simulations that account for space-momentum correlations (SMCs) in transported charm- and thermal light-quark distributions. The SMCs, together with the augmented charm-baryon states, are found to play an important role in describing the baryon-to-meson enhancement at intermediate momenta. We emphasize the importance of satisfying the correct (relative) chemical equilibrium limit when computing the charm hadrochemistry and its momentum dependence with coalescence models.
Photoproduction of heavy quarks and exclusive production of vector mesons in ultraperipheral proton-nucleus and nucleus-nucleus collisions depend significantly on nuclear gluon distributions. In the present study we investigate quantitatively the extent of the applicability of these processes at the Large Hadron Collider (LHC) in constraining the shadowing component of nuclear gluon modifications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا