Do you want to publish a course? Click here

Determination of the Gamow-Teller Quenching Factor from Charge Exchange Reactions on 90Zr

71   0   0.0 ( 0 )
 Added by Kentaro Yako
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

Double differential cross sections between 0-12 degrees were measured for the 90Zr(n,p) reaction at 293 MeV over a wide excitation energy range of 0-70 MeV. A multipole decomposition technique was applied to the present data as well as the previously obtained 90Zr(p,n) data to extract the Gamow-Teller (GT) component from the continuum. The GT quenching factor Q was derived by using the obtained total GT strengths. The result is Q=0.88+/-0.06 not including an overall normalization uncertainty in the GT unit cross section of 16%.



rate research

Read More

Gamow-Teller (GT) and spin-dipole (SD) strength distributions of four doubly magic nuclei $^{48}$Ca, $^{90}$Zr, $^{132}$Sn and $^{208}$Pb are studied by the self-consistent Hartree-Fock plus random phase approximation (RPA) method. The Skyrme forces SAMi and SAMi-T without/with tensor interactions are adopted in our calculations. The calculated strengths are compared with available experimental data. The RPA results of GT and SD strengths of all four nuclei show fine agreement with observed GT and SD resonances in energy. A small GT peak below the main GT resonance is better described by the Skyrme interaction SAMi-T with the tensor terms. The quenching factors for GT and SD are extracted from the comparisons between RPA results and experimental strengths. It is pointed out that the quenching effect on experimental SD peaks is somewhat modest compared with that on GT peaks in the four nuclei.
161 - C.L. Bai 2009
The tensor terms of the Skyrme effective interaction are included in the self-consistent Hartree-Fock plus Random Phase Approximation (HF+RPA) model. The Gamow-Teller (GT) strength function of 90Zr and 208Pb are calculated with and without the tensor terms. The main peaks are moved downwards by about 2 MeV when including the tensor contribution. About 10% of the non-energy weighted sum rule is shifted to the excitation energy region above 30 MeV by the RPA tensor correlations. The contribution of the tensor terms to the energy weighted sum rule is given analytically, and compared to the outcome of RPA.
Charge-exchange reactions are an important tool for determining weak-interaction rates. They provide stringent tests for nuclear structure models necessary for modeling astrophysical environments such as neutron stars and core-collapse supernovae. In anticipation of (t,3He) experiments at 115 MeV/nucleon on nuclei of relevance (A~40-120) in the late evolution of stars, it is shown via a study of the 26Mg(t,3He) reaction that this probe is an accurate tool for extracting Gamow-Teller transition strengths. To do so, the data are complemented by results from the 26Mg(3He,t) reaction at 140 MeV/nucleon which allows for a comparison of T=2 analog states excited via the mirror reactions. Extracted Gamow-Teller strengths from 26Mg(t,3He) and 26Mg(3He,t) are compared with those from 26Mg(d,2He) and 26Mg(p,n) studies, respectively. A good correspondence is found, indicating probe-independence of the strength extraction. Furthermore, we test shell-model calculations using the new USD-05B interaction in the sd-model space and show that it reproduces the experimental Gamow-Teller strength distributions well. A second goal of this work is to improve the understanding of the (t,3He) and (3He,t) reaction mechanisms at intermediate energies since detailed studies are scarce. The Distorted-Wave Born Approximation is employed, taking into account the composite structures of the 3He and triton particles. The reaction model provides the means to explain systematic uncertainties at the 10-20% level in the extraction of Gamow-Teller strengths as being due to interference between Gamow-Teller dL=0, dS=1 and dL=2, dS=1 amplitudes that both contribute to transitions from 0+ to 1+ states.
The proportionality between differential cross sections at vanishing linear momentum transfer and Gamow-Teller transition strength, expressed in terms of the textit{unit cross section} ($hat{sigma}_{GT}$) was studied as a function of target mass number for ($t$,$^{3}$He) and ($^{3}$He,$t$) reactions at 115 $A$MeV and 140 $A$MeV, respectively. Existing ($^{3}$He,$t$) and ($t$,$^{3}$He) data on targets with mass number $12leq Aleq 120$ were complemented with new and reevaluated ($t$,$^{3}$He) data on proton, deuteron, $^{6}$Li and $^{12}$C targets. It was found that in spite of the small difference in beam energies between the two probes, the unit cross sections have a nearly identical and simple dependence on target mass number $A$, for $Ageq 12$: $hat{sigma}_{GT}=109/A^{0.65}$. The factorization of the unit cross sections in terms of a kinematical factor, a distortion factor and the strength of the effective spin-isospin transfer nucleus-nucleus interaction was investigated. Simple phenomenological functions depending on mass number $A$ were extracted for the latter two. By comparison with plane and distorted-wave Born approximation calculations, it was found that the use of a short-range approximation for knock-on exchange contributions to the transition amplitude results in overestimated cross sections for reactions involving the composite ($^{3}$He,$t$) and ($t$,$^{3}$He) probes.
We develop a fully self-consistent subtracted second random-phase approximation for charge-exchange processes with Skyrme energy-density functionals. As a first application, we study Gamow-Teller excitations in the doubly-magic nucleus $^{48}$Ca, the lightest double-$beta$ emitter that could be used in an experiment, and in $^{78}$Ni, the single-beta-decay rate of which is known. The amount of Gamow-Teller strength below 20 or 30 MeV is considerably smaller than in other energy-density-functional calculations and agrees better with experiment in $^{48}$Ca, as does the beta-decay rate in $^{78}$Ni. These important results, obtained without textit{ad hoc} quenching factors, are due to the presence of two-particle -- two-hole configurations. Their density progressively increases with excitation energy, leading to a long high-energy tail in the spectrum, a fact that may have implications for the computation of nuclear matrix elements for neutrinoless double-$beta$ decay in the same framework.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا