No Arabic abstract
We have measured the energy spectra of pions and protons emitted in the weak decay of 12_Lambda_C, 28_Lambda_Si, and Lambda_Fe hypernuclei produced via the (pi+, K+) reaction. The decay widths of the pi- mesonic decay (Lambda -> p + pi-) and the nonmesonic decay (Lambda + N -> N + N) were extracted. The present results demonstrate an increase of the mesonic decay width due to a distortion of the pion wave function in nuclear medium for the first time. The ratios of the neutron- to proton-induced nonmesonic decay widths, Gamma_n(Lambda + n -> n + n)/Gamma_p(Lambda + p -> n + p), were evaluated by a direct comparison of the measured proton energy spectra with the calculated ones. No theoretical calculation which has been proposed so far can simultaneously account for both the nonmesonic decay widths and the Gamma_n/Gamma_p ratios in the present data.
The FINUDA experiment performed a systematic study of the charged mesonic weak decay channel of $p$-shell $Lambda$-hypernuclei. Negatively charged pion spectra from mesonic decay were measured with magnetic analysis for the first time for ${^{7}_{Lambda}Li}$, ${^{9}_{Lambda}Be}$, ${^{11}_{Lambda}B}$ and ${^{15}_{Lambda}N}$. The shape of the $pi^{-}$ spectra was interpreted through a comparison with pion distorted wave calculations that take into account the structure of both hypernucleus and daughter nucleus. Branching ratios $Gamma_{pi^{-}}/Gamma_{tot}$ were derived from the measured spectra and converted to $pi^{-}$ decay rates $Gamma_{pi^{-}}$ by means of known or extrapolated total decay widths $Gamma_{tot}$ of $p$-shell $Lambda$-hypernuclei. Based on these measurements, the spin-parity assignment $1/2^+$ for ${^{7}_{Lambda}Li}$ and $5/2^+$ for ${^{11}_{Lambda}B}$ ground-state are confirmed and a spin-parity $3/2^+$ for ${^{15}_{Lambda}N}$ ground-state is assigned for the first time.
Hypernuclei are convenient laboratory to study the baryon-baryon weak interaction and associated effective Hamiltonian. The strangeness changing process, in which a Lambda hyperon converts to a neutron with a release up to 176 MeV, provides a clear signal for a conversion of an s-quark to a d-quark. We propose to perform a non-mesonic weak decay study of 10Be(Lambda)hypernuclei using the (e,eK) reaction. These investigations will fully utilize the unique parameters of the CEBAF CW electron beam and RF system and are enabled by (1) the use of new detector for alpha particles based on the recently developed RF timing technique with picosecond resolution and (2) the small angle and large acceptance kaon spectrometer-HKS in Hall C.
Having in mind its future extension for theoretical investigations related to charmed nuclei, we develop a relativistic formalism for the nonmesonic weak decay of single-$Lambda$ hypernuclei in the framework of the independent-particle shell model and with the dynamics represented by the $(pi,K)$ one-meson-exchange model. Numerical results for the one-nucleon-induced transition rates of ${}^{12}_{Lambda}textrm{C}$ are presented and compared with those obtained in the analogous nonrelativistic calculation. There is satisfactory agreement between the two approaches, and the most noteworthy difference is that the ratio $Gamma_{n}/Gamma_{p}$ is appreciably higher and closer to the experimental value in the relativistic calculation. Large discrepancies between ours and previous relativistic calculations are found, for which we do not encounter any fully satisfactory explanation. The most recent experimental data is well reproduced by our results. In summary, we have achieved our purpose to develop a reliable model for the relativistic calculation of the nonmesonic weak decay of $Lambda$-hypernuclei, which can now be extended to evaluate similar processes in charmed nuclei.
The nonmesonic weak decay of $Lambda$ hypernuclei is studied within a microscopic diagrammatic approach which is extended to include the three--nucleon induced mechanism. We adopt a nuclear matter formalism which, through the local density approximation, allows us to model finite hypernuclei, a one--meson--exchange weak transition potential and a Bonn nucleon--nucleon strong potential. One--, two-- and three--nucleon induced weak decay rates are predicted for $^{12}_Lambda$C by including ground state correlations up to second order in the nucleon--nucleon potential and the recoil of the residual nucleus. Three--nucleon stimulated decays, $Lambda NNNto nNNN$ ($N=n$ or $p$), are considered here for the first time. The obtained decay rates compare well with the latest KEK and FINUDA data. The three--nucleon induced rate turns out to be dominated by $nnp$-- and $npp$--induced decays, it amounts to $sim$ 7% of the total nonmesonic rate and it is $sim 1/2$ of the neutron--induced decay rate. The reduction effect of the nuclear recoil is particularly relevant for the three--nucleon induced rates ($sim$ 15%), less important for the two--nucleon induced rates ($sim$ 4%) and negligible for the one--nucleon induced rates. Given the non--negligible size of the three--nucleon induced contribution and consequently its importance in the precise determination of the complete set of decay rates, new measurements and/or experimental analysis are encouraged.
The non-mesonic weak decay of polarized Lambda-hypernuclei is studied for the first time by taking into account, with a Monte Carlo intranuclear cascade code, the nucleon final state interactions. A one-meson-exchange model is employed to describe the Lambda N-> n N processes in a finite nucleus framework. The relationship between the intrinsic Lambda asymmetry parameter a_Lambda and the asymmetry a^M_Lambda accessible in experiments is discussed. A strong dependence of a^M_Lambda on nucleon final state interactions and detection threshold is obtained. Our results for a^M_Lambda are consistent with ^{11}_Lambda B and ^{12}_Lambda C data but disagree with observations in ^5_Lambda He.