No Arabic abstract
We have simultaneously measured the energy spectra of neutrons and protons emitted in the non-mesonic weak decays of 5_Lambda-He and 12_Lambda-C hypernuclei produced via the (pi^+,k^+) reaction with much higher statistics over those of previous experiments. The neutron-to-proton yield ratios for both hypernuclei at a high energy threshold (60 MeV) were approximately equal to two, which suggests that the ratio of the neutron- and proton-induced decay channels, Gn(Lambda n -> nn)/Gp(Lambda p -> np), is about 0.5. In the neutron energy spectra, we found that the yield of the low-energy component is unexpectedly large, even for 5_Lambda-He.
We have measured both yields of neutron-proton and neutron-neutron pairs emitted from the non-mesonic weak decay process of 5_Lambda-He and 12_Lambda-C hypernuclei produced via the (pi^+,K^+) reaction for the first time. We observed clean back-to-back correlation of the np- and nn-pairs in the coincidence spectra for both hypernuclei. The ratio of those back-to-back pair yields, Nnn / Nnp, must be close to the ratio of neutron- and proton-induced decay widths of the decay, Gn(Lambda n -> nn)/Gp(Lambda p -> np). The obtained ratios for each hypernuclei support recent calculations based on short-range interactions.
The Non-Mesonic (NM) decay of $^4_Lambda{mathrm{He}}$ and $^5_Lambda{mathrm{He}}$ in two-body channels has been studied by the FINUDA Collaboration. Two-body NM decays of hypernuclei are rare and the existing observations and theoretical calculations are scarce. The $^4_Lambda{mathrm{He}}rightarrow d+d,; p+t$ decay channels simultaneously observed by FINUDA on several nuclei are compared: the $pt$ channel is the dominant one. The decay yields for the two decay channels are assessed for the first time: they are $(1.37pm 0.37)times 10^{-5}/K^-_{stop}$ and $(8.3pm 1.0)times 10^{-5}/K^-_{stop}$, respectively. Due to the capability of FINUDA of identifying $^5_Lambda{mathrm{He}}$ hypernuclei, a few $^5_Lambda{mathrm{He}}rightarrow d+t$ decay events have also been observed. The branching ratio for this decay channel has been measured for the first time: $(3.0pm 2.3)times 10^{-3}$.
We precisely measured pi^0 branching ratios of 5_Lambda-He and 12_Lambda-C hypernuclei produced via (pi^+,k^+) reaction. Using these pi^0 branching ratios with the pi^- branching ratios and the lifetimes, we obtained the pi^0 decay widths and the non-mesonic weak decay widths at high statistics with the accuracy of ~5 % (stat) for both hypernuclei.
The results of a measurement of the proton spectra following the Non--Mesonic Weak Decay of $mathrm{^5_{Lambda}He}$, $mathrm{^7_{Lambda}Li}$ and $mathrm{^{12}_{Lambda}C}$ are presented and discussed. The experiment was performed at the ($e^+$ $e^-$) collider DA$Phi$NE at Laboratori Nazionale di Frascati of INFN. It is the first measurement for $mathrm{^7_{Lambda}Li}$, and for all the spectra the lower limit on the energy of the protons is 15 MeV, never reached before. All the spectra show a similar shape, namely a peak at around 80 MeV as expected for the free $Lambda p to np$ weak reaction, with a low energy rise that should be due to Final State Interactions and/or two--nucleon induced weak processes. The decay spectrum of $mathrm{^5_{Lambda}He}$ is somehow similar to the ones reported by previous measurements and theoretical calculations, but the same doesnt happen for the $mathrm{^{12}_{Lambda}C}$ one.
New spectra from the FINUDA experiment of the Non Mesonic Weak Decay (NMWD) proton kinetic energy for 9(Lambda)Be, 11(Lambda)B, 12(Lambda)C, 13(Lambda)C, 15 (Lambda)N and 16(Lambda)O are presented and discussed along with the published data on 5(Lambda)He and 7(Lambda)Li. Exploiting the large mass number range and the low energy threshold (15 MeV) for the proton detection of FINUDA, an evaluation of both Final State Interactions (FSI) and the two nucleon induced NMWD contributions to the decay process has been done. Based on this evaluation, a linear dependence of FSI on the hypernuclear mass number A is found and for the two nucleon stimulated decay rate the experimental value of Gamma2/Gammap=0.43+-0.25 is determined for the first time. A value for the two nucleon stimulated decay rate to the total decay rate Gamma2/GammaNMWD=0.24+-0.10 is also extracted.