Do you want to publish a course? Click here

Deformation of the N=Z nucleus 76Sr using beta-decay studies

67   0   0.0 ( 0 )
 Added by Enrique N\\'acher
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

A novel method of deducing the deformation of the N=Z nucleus 76Sr is presented. It is based on the comparison of the experimental Gamow-Teller strength distribution B(GT) from its beta decay with the results of QRPA calculations. This method confirms previous indications of the strong prolate deformation of this nucleus in a totally independent way. The measurement has been carried out with a large Total Absorption gamma Spectrometer, Lucrecia, newly installed at CERN-ISOLDE.



rate research

Read More

57 - P. Papka , C. Beck , F. Haas 2003
The N = Z 44Ti* nucleus has been populated in Fusion Evaporation process at very high excitation energies and angular momenta using two entrance channels with different mass-asymmetry. The deformation effects in the rapidly rotating nuclei have been investigated through the energy distribution of the alpha-particle combined to statistical-model calculations. In the case of low-multiplicity events, the ratio between first particle emitted has been measured and shows significant disagreement with the predictions of the statistical-model. This may explain The large discrepancies observed in proton energy spectra measured in previous experiments performed in the same mass region.
The no-core configuration-interaction model based on the isospin- and angular-momentum projected density functional formalism is introduced. Two applications of the model are presented: (i) determination of spectra of 0+ states in 62Zn and (ii) determination of isospin-symmetry-breaking corrections to superallowed beta-decay between isobaric-analogue 0+ states in 38Ca and 38K. It is shown that, without readjusting a single parameter of the underlying Skyrme interaction, in all three nuclei, the model reproduces the 0+ spectra surprisingly well.
The half-lives of three $beta$ decaying states of $^{131}_{~49}$In$_{82}$ have been measured with the GRIFFIN $gamma$-ray spectrometer at the TRIUMF-ISAC facility to be $T_{1/2}(1/2^-)=328(15)$~ms, $T_{1/2}(9/2^+)=265(8)$~ms, and $T_{1/2}(21/2^+)=323(55)$~ms, respectively. The first observation of $gamma$-rays following the $beta n$ decay of $^{131}$In into $^{130}$Sn is reported. The $beta$-delayed neutron emission probability is determined to be $P_{1n} = 12(7)%$ for the $21/2^+$ state and $2.3(3)%$ from the combined $1/2^-$ and $9/2^+$ states of $^{131}_{~49}$In$_{82}$ observed in this experiment. A significant expansion of the decay scheme of $^{131}$In, including 17 new excited states and 34 new $gamma$-ray transitions in $^{131}_{~50}$Sn$_{81}$ is also reported. This leads to large changes in the deduced $beta$ branching ratios to some of the low-lying states of $^{131}$Sn compared to previous work with implications for the strength of the first-forbidden $beta$ transitions in the vicinity of doubly-magic $^{132}_{~50}$Sn$_{82}$.
Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.
The beta decay of $^{192,190}$Pb has been studied using the total absorption technique at the ISOLDE(CERN) facility. The beta-decay strength deduced from the measurements, combined with QRPA theoretical calculations, allow us to infer that the ground states of the $^{192,190}$Pb isotopes are spherical. These results represent the first application of the shape determination method using the total absorption technique for heavy nuclei and in a region where there is considerable interest in nuclear shapes and shape effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا