Do you want to publish a course? Click here

The effect of a cutoff on pushed and bistable fronts of the reaction diffusion equation

121   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We give an explicit formula for the change of speed of pushed and bistable fronts of the reaction diffusion equation when a small cutoff is applied at the unstable or metastable equilibrium point. The results are valid for arbitrary reaction terms and include the case of density dependent diffusion.



rate research

Read More

We study the change in the speed of pushed and bistable fronts of the reaction diffusion equation in the presence of a small cut-off. We give explicit formulas for the shift in the speed for arbitrary reaction terms f(u). The dependence of the speed shift on the cut-off parameter is a function of the front speed and profile in the absence of the cut-off. In order to determine the speed shift we solve the leading order approximation to the front profile u(z) in the neighborhood of the leading edge and use a variational principle for the speed. We apply the general formula to the Nagumo equation and recover the results which have been obtained recently by geometric analysis. The formulas given are of general validity and we also apply them to a class of reaction terms which have not been considered elsewhere.
102 - Hongjun Guo 2021
In this paper, we prove some qualitative properties of pushed fronts for the periodic reaction-diffusion-equation with general monostable nonlinearities. Especially, we prove the exponential behavior of pushed fronts when they are approaching their unstable state which has been left open so far. Through this property, we also prove the stability of pushed fronts.
We study the minimal speed of propagating fronts of convection reaction diffusion equations of the form $u_t + mu phi(u) u_x = u_{xx} +f(u)$ for positive reaction terms with $f(0 >0$. The function $phi(u)$ is continuous and vanishes at $u=0$. A variational principle for the minimal speed of the waves is constructed from which upper and lower bounds are obtained. This permits the a priori assesment of the effect of the convective term on the minimal speed of the traveling fronts. If the convective term is not strong enough, it produces no effect on the minimal speed of the fronts. We show that if $f(u)/sqrt{f(0)} + mu phi(u) < 0$, then the minimal speed is given by the linear value $2 sqrt{f(0)}$, and the convective term has no effect on the minimal speed. The results are illustrated by applying them to the exactly solvable case $u_t + mu u u_x = u_{xx} + u (1 -u)$. Results are also given for the density dependent diffusion case $u_t + mu phi(u) u_x = (D(u)u_x)_x +f(u)$.
We establish rigorous upper and lower bounds for the speed of pulled fronts with a cutoff. We show that the Brunet-Derrida formula corresponds to the leading order expansion in the cut-off parameter of both the upper and lower bounds. For sufficiently large cut-off parameter the Brunet-Derrida formula lies outside the allowed band determined from the bounds. If nonlinearities are neglected the upper and lower bounds coincide and are the exact linear speed for all values of the cut-off parameter.
The empirical velocity of a reaction-diffusion front, propagating into an unstable state, fluctuates because of the shot noises of the reactions and diffusion. Under certain conditions these fluctuations can be described as a diffusion process in the reference frame moving with the average velocity of the front. Here we address pushed fronts, where the front velocity in the deterministic limit is affected by higher-order reactions and is therefore larger than the linear spread velocity. For a subclass of these fronts -- strongly pushed fronts -- the effective diffusion constant $D_fsim 1/N$ of the front can be calculated, in the leading order, via a perturbation theory in $1/N ll 1$, where $Ngg 1$ is the typical number of particles in the transition region. This perturbation theory, however, overestimates the contribution of a few fast particles in the leading edge of the front. We suggest a more consistent calculation by introducing a spatial integration cutoff at a distance beyond which the average number of particles is of order 1. This leads to a non-perturbative correction to $D_f$ which even becomes dominant close to the transition point between the strongly and weakly pushed fronts. At the transition point we obtain a logarithmic correction to the $1/N$ scaling of $D_f$. We also uncover another, and quite surprising, effect of the fast particles in the leading edge of the front. Because of these particles, the position fluctuations of the front can be described as a diffusion process only on very long time intervals with a duration $Delta t gg tau_N$, where $tau_N$ scales as $N$. At intermediate times the position fluctuations of the front are anomalously large and non-diffusive. Our extensive Monte-Carlo simulations of a particular reacting lattice gas model support these conclusions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا