Do you want to publish a course? Click here

Velocity fluctuations of stochastic reaction fronts propagating into an unstable state: strongly pushed fronts

124   0   0.0 ( 0 )
 Added by Baruch Meerson
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The empirical velocity of a reaction-diffusion front, propagating into an unstable state, fluctuates because of the shot noises of the reactions and diffusion. Under certain conditions these fluctuations can be described as a diffusion process in the reference frame moving with the average velocity of the front. Here we address pushed fronts, where the front velocity in the deterministic limit is affected by higher-order reactions and is therefore larger than the linear spread velocity. For a subclass of these fronts -- strongly pushed fronts -- the effective diffusion constant $D_fsim 1/N$ of the front can be calculated, in the leading order, via a perturbation theory in $1/N ll 1$, where $Ngg 1$ is the typical number of particles in the transition region. This perturbation theory, however, overestimates the contribution of a few fast particles in the leading edge of the front. We suggest a more consistent calculation by introducing a spatial integration cutoff at a distance beyond which the average number of particles is of order 1. This leads to a non-perturbative correction to $D_f$ which even becomes dominant close to the transition point between the strongly and weakly pushed fronts. At the transition point we obtain a logarithmic correction to the $1/N$ scaling of $D_f$. We also uncover another, and quite surprising, effect of the fast particles in the leading edge of the front. Because of these particles, the position fluctuations of the front can be described as a diffusion process only on very long time intervals with a duration $Delta t gg tau_N$, where $tau_N$ scales as $N$. At intermediate times the position fluctuations of the front are anomalously large and non-diffusive. Our extensive Monte-Carlo simulations of a particular reacting lattice gas model support these conclusions.



rate research

Read More

The position of a reaction front, propagating into a metastable state, fluctuates because of the shot noise of reactions and diffusion. A recent theory [B. Meerson, P.V. Sasorov, and Y. Kaplan, Phys. Rev. E 84, 011147 (2011)] gave a closed analytic expression for the front diffusion coefficient in the weak noise limit. Here we test this theory in stochastic simulations involving reacting and diffusing particles on a one-dimensional lattice. We also investigate a small noise-induced systematic shift of the front velocity compared to the prediction from the spatially continuous deterministic reaction-diffusion equation.
102 - Hongjun Guo 2021
In this paper, we prove some qualitative properties of pushed fronts for the periodic reaction-diffusion-equation with general monostable nonlinearities. Especially, we prove the exponential behavior of pushed fronts when they are approaching their unstable state which has been left open so far. Through this property, we also prove the stability of pushed fronts.
94 - G. Grinstein , Yuhai Tu , 1998
We analyze the stability of a planar solid-solid interface at which a chemical reaction occurs. Examples include oxidation, nitridation, or silicide formation. Using a continuum model, including a general formula for the stress-dependence of the reaction rate, we show that stress effects can render a planar interface dynamically unstable with respect to perturbations of intermediate wavelength.
58 - Y. Melean , D. Broseta , A. Hasmy 2002
We have studied the dispersive behaviour of imbibition fronts in a porous medium by X-ray tomography. Injection velocities were varied and the porous medium was initially prewetted or not. At low velocity in the prewetted medium, the imbibition profiles are found to be distinctly hyperdispersive. The profiles are anomalously extended when compared to tracer fronts exhibiting conventional (Gaussian) dispersion. We observe a strong velocity dependence of the exponent characterizing the divergence of the dispersion coefficient for low wetting-fluid saturation. Hyperdispersion is absent at high imbibition velocities or when the medium is not prewetted.
We give an explicit formula for the change of speed of pushed and bistable fronts of the reaction diffusion equation when a small cutoff is applied at the unstable or metastable equilibrium point. The results are valid for arbitrary reaction terms and include the case of density dependent diffusion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا