Do you want to publish a course? Click here

Intracultural diversity in a model of social dynamics

125   0   0.0 ( 0 )
 Added by Antonio Parravano
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the consequences of introducing individual nonconformity in social interactions, based on Axelrods model for the dissemination of culture. A constraint on the number of situations in which interaction may take place is introduced in order to lift the unavoidable ho mogeneity present in the final configurations arising in Axelrods related models. The inclusion of this constraint leads to the occurrence of complex patterns of intracultural diversity whose statistical properties and spatial distribution are characterized by means of the concepts of cultural affinity and cultural cli ne. It is found that the relevant quantity that determines the properties of intracultural diversity is given by the fraction of cultural features that characterizes the cultural nonconformity of individuals.



rate research

Read More

The enormous increase of popularity and use of the WWW has led in the recent years to important changes in the ways people communicate. An interesting example of this fact is provided by the now very popular social annotation systems, through which users annotate resources (such as web pages or digital photographs) with text keywords dubbed tags. Understanding the rich emerging structures resulting from the uncoordinated actions of users calls for an interdisciplinary effort. In particular concepts borrowed from statistical physics, such as random walks, and the complex networks framework, can effectively contribute to the mathematical modeling of social annotation systems. Here we show that the process of social annotation can be seen as a collective but uncoordinated exploration of an underlying semantic space, pictured as a graph, through a series of random walks. This modeling framework reproduces several aspects, so far unexplained, of social annotation, among which the peculiar growth of the size of the vocabulary used by the community and its complex network structure that represents an externalization of semantic structures grounded in cognition and typically hard to access.
Statistical physics has proven to be a very fruitful framework to describe phenomena outside the realm of traditional physics. The last years have witnessed the attempt by physicists to study collective phenomena emerging from the interactions of individuals as elementary units in social structures. Here we review the state of the art by focusing on a wide list of topics ranging from opinion, cultural and language dynamics to crowd behavior, hierarchy formation, human dynamics, social spreading. We highlight the connections between these problems and other, more traditional, topics of statistical physics. We also emphasize the comparison of model results with empirical data from social systems.
We present a general framework for the study of coevolution in dynamical systems. This phenomenon consists of the coexistence of two dynamical processes on networks of interacting elements: node state change and rewiring of links between nodes. The process of rewiring is described in terms of two basic actions: disconnection and reconnection between nodes, both based on a mechanism of comparison of their states. We assume that the process of rewiring and node state change occur with probabilities Pr and Pc respectively, independent of each other. The collective behavior of a coevolutionary system can be characterized on the space of parameters (Pr, Pc). As an application, for a voterlike node dynamics we find that reconnections between nodes with similar states lead to network fragmentation. The critical boundaries for the onset of fragmentation in networks with different properties are calculated on this space. We show that coevolution models correspond to curves on this space describing functional relations between Pr and Pc. The occurrence of a one-large-domain phase and a fragmented phase in the network is predicted for diverse models, and agreement is found with some earlier results. The collective behavior of system is also characterized on the space of parameters for the disconnection and reconnection actions. In a region of this space, we find a behavior where different node states can coexist for very long times on one large, connected network.
Social fragmentation caused by widening differences among constituents has recently become a highly relevant issue to our modern society. Theoretical models of social fragmentation using the adaptive network framework have been proposed and studied in earlier literature, which are known to either converge to a homogeneous, well-connected network or fragment into many disconnected sub-networks with distinct states. Here we introduced the diversities of behavioral attributes among social constituents and studied their effects on social network evolution. We investigated, using a networked agent-based simulation model, how the resulting network states and topologies would be affected when individual constituents cultural tolerance, cultural state change rate, and edge weight change rate were systematically diversified. The results showed that the diversity of cultural tolerance had the most direct effect to keep the cultural diversity within the society high and simultaneously reduce the average shortest path length of the social network, which was not previously reported in the earlier literature. Diversities of other behavioral attributes also had effects on final states of the social network, with some nonlinear interactions. Our results suggest that having a broad distribution of cultural tolerance levels within society can help promote the coexistence of cultural diversity and structural connectivity.
70 - Jinha Park , B. Kahng 2020
The features of animal population dynamics, for instance, flocking and migration, are often synchronized for survival under large-scale climate change or perceived threats. These coherent phenomena have been explained using synchronization models. However, such models do not take into account asynchronous and adaptive updating of an individuals status at each time. Here, we modify the Kuramoto model slightly by classifying oscillators as leaders or followers, according to their angular velocity at each time, where individuals interact asymmetrically according to their leader/follower status. As the angular velocities of the oscillators are updated, the leader and follower status may also be reassigned. Owing to this adaptive dynamics, oscillators may cooperate by taking turns acting as a leader or follower. This may result in intriguing patterns of synchronization transitions, including hybrid phase transitions, and produce the leader-follower switching pattern observed in bird migration patterns.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا