No Arabic abstract
We refute an often invoked theorem which claims that a periodic orbit with an odd number of real Floquet multipliers greater than unity can never be stabilized by time-delayed feedback control in the form proposed by Pyragas. Using a generic normal form, we demonstrate that the unstable periodic orbit generated by a subcritical Hopf bifurcation, which has a single real unstable Floquet multiplier, can in fact be stabilized. We derive explicit analytical conditions for the control matrix in terms of the amplitude and the phase of the feedback control gain, and present a numerical example. Our results are of relevance for a wide range of systems in physics, chemistry, technology,and life sciences, where subcritical Hopf bifurcations occur.
We present an algorithm for a time-delayed feedback control design to stabilize periodic orbits with an odd number of positive Floquet exponents in autonomous systems. Due to the so-called odd number theorem such orbits have been considered as uncontrollable by time-delayed feedback methods. However, this theorem has been refuted by a counterexample and recently a corrected version of the theorem has been proved. In our algorithm, the control matrix is designed using a relationship between Floquet multipliers of the systems controlled by time-delayed and proportional feedback. The efficacy of the algorithm is demonstrated with the Lorenz and Chua systems.
Time-delayed feedback methods can be used to control unstable periodic orbits as well as unstable steady states. We present an application of extended time delay autosynchronization introduced by Socolar et al. to an unstable focus. This system represents a generic model of an unstable steady state which can be found for instance in a Hopf bifurcation. In addition to the original controller design, we investigate effects of control loop latency and a bandpass filter on the domain of control. Furthermore, we consider coupling of the control force to the system via a rotational coupling matrix parametrized by a variable phase. We present an analysis of the domain of control and support our results by numerical calculations.
We present an analysis of time-delayed feedback control used to stabilize an unstable steady state of a neutral delay differential equation. Stability of the controlled system is addressed by studying the eigenvalue spectrum of a corresponding characteristic equation with two time delays. An analytic expression for the stabilizing control strength is derived in terms of original system parameters and the time delay of the control. Theoretical and numerical results show that the interplay between the control strength and two time delays provides a number of regions in the parameter space where the time-delayed feedback control can successfully stabilize an otherwise unstable steady state.
We investigate the possibility to suppress noise-induced intensity pulsations (relaxation oscillations) in semiconductor lasers by means of a time-delayed feedback control scheme. This idea is first studied in a generic normal form model, where we derive an analytic expression for the mean amplitude of the oscillations and demonstrate that it can be strongly modulated by varying the delay time. We then investigate the control scheme analytically and numerically in a laser model of Lang-Kobayashi type and show that relaxation oscillations excited by noise can be very efficiently suppressed via feedback from a Fabry-Perot resonator.
We show that time-delayed feedback methods, which have successfully been used to control unstable periodic ortbits, provide a tool to stabilize unstable steady states. We present an analytical investigation of the feedback scheme using the Lambert function and discuss effects of both a low-pass filter included in the control loop and non-zero latency times associated with the generation and injection of the feedback signal.