Do you want to publish a course? Click here

Synchronization of extended chaotic systems with long-range interactions: an analogy to Levy-flight spreading of epidemics

53   0   0.0 ( 0 )
 Added by Cencini Massimo Dr.
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spatially extended chaotic systems with power-law decaying interactions are considered. Two coupled replicas of such systems synchronize to a common spatio-temporal chaotic state above a certain coupling strength. The synchronization transition is studied as a nonequilibrium phase transition and its critical properties are analyzed at varying the interaction range. The transition is found to be always continuous, while the critical indexes vary with continuity with the power law exponent characterizing the interaction. Strong numerical evidences indicate that the transition belongs to the {it anomalous directed percolation} family of universality classes found for L{e}vy-flight spreading of epidemic processes.



rate research

Read More

Two deterministic models for Brownian motion are investigated by means of numerical simulations and kinetic theory arguments. The first model consists of a heavy hard disk immersed in a rarefied gas of smaller and lighter hard disks acting as a thermal bath. The second is the same except for the shape of the particles, which is now square. The basic difference of these two systems lies in the interaction: hard core elastic collisions make the dynamics of the disks chaotic whereas that of squares is not. Remarkably, this difference is not reflected in the transport properties of the two systems: simulations show that the diffusion coefficients, velocity correlations and response functions of the heavy impurity are in agreement with kinetic theory for both the chaotic and the non-chaotic model. The relaxation to equilibrium, however, is very sensitive to the kind of interaction. These observations are used to reconsider and discuss some issues connected to chaos, statistical mechanics and diffusion.
Networks of nonlinear units with time-delayed couplings can synchronize to a common chaotic trajectory. Although the delay time may be very large, the units can synchronize completely without time shift. For networks of coupled Bernoulli maps, analytic results are derived for the stability of the chaotic synchronization manifold. For a single delay time, chaos synchronization is related to the spectral gap of the coupling matrix. For networks with multiple delay times, analytic results are obtained from the theory of polynomials. Finally, the analytic results are compared with networks of iterated tent maps and Lang-Kobayashi equations which imitate the behaviour of networks of semiconductor lasers.
A new method of virtual unknown parameter is proposed to synchronize two different systems with unknown parameters and disturbance in finite time. Virtual unknown parameters are introduced in order to avoid the unknown parameters from appearing in the controllers and parameters update laws when the adaptive control method is applied. A single virtual unknown parameter is used in the design of adaptive controllers and parameters update laws if the Lipschitz constant on the nonlinear function can be found, while multiple virtual unknown parameters are adopted if the Lipschitz constant cannot be determined. Numerical simulations show that the present method does make the two different chaotic systems synchronize in finite time.
A new type of noise-induced synchronous behavior is described. This phenomenon, called incomplete noise-induced synchronization, arises for one-dimensional Ginzburg-Landau equations driven by common noise. The mechanisms resulting in the incomplete noise-induced synchronization in the spatially extended systems are revealed analytically. The different model noise are considered. A very good agreement between the theoretical results and the numerically calculated data is shown.
Synchronization of chaotic units coupled by their time delayed variables are investigated analytically. A new type of cooperative behavior is found: sublattice synchronization. Although the units of one sublattice are not directly coupled to each other, they completely synchronize without time delay. The chaotic trajectories of different sublattices are only weakly correlated but not related by generalized synchronization. Nevertheless, the trajectory of one sublattice is predictable from the complete trajectory of the other one. The spectra of Lyapunov exponents are calculated analytically in the limit of infinite delay times, and phase diagrams are derived for different topologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا