Do you want to publish a course? Click here

Chaotic Dynamics in Optimal Monetary Policy

102   0   0.0 ( 0 )
 Added by Diana Mendes A.
 Publication date 2006
  fields Physics Financial
and research's language is English




Ask ChatGPT about the research

There is by now a large consensus in modern monetary policy. This consensus has been built upon a dynamic general equilibrium model of optimal monetary policy as developed by, e.g., Goodfriend and King (1997), Clarida et al. (1999), Svensson (1999) and Woodford (2003). In this paper we extend the standard optimal monetary policy model by introducing nonlinearity into the Phillips curve. Under the specific form of nonlinearity proposed in our paper (which allows for convexity and concavity and secures closed form solutions), we show that the introduction of a nonlinear Phillips curve into the structure of the standard model in a discrete time and deterministic framework produces radical changes to the major conclusions regarding stability and the efficiency of monetary policy. We emphasize the following main results: (i) instead of a unique fixed point we end up with multiple equilibria; (ii) instead of saddle--path stability, for different sets of parameter values we may have saddle stability, totally unstable equilibria and chaotic attractors; (iii) for certain degrees of convexity and/or concavity of the Phillips curve, where endogenous fluctuations arise, one is able to encounter various results that seem intuitively correct. Firstly, when the Central Bank pays attention essentially to inflation targeting, the inflation rate has a lower mean and is less volatile; secondly, when the degree of price stickiness is high, the inflation rate displays a larger mean and higher volatility (but this is sensitive to the values given to the parameters of the model); and thirdly, the higher the target value of the output gap chosen by the Central Bank, the higher is the inflation rate and its volatility.



rate research

Read More

90 - Luyao Zhang , Yulin Liu 2021
Centralized monetary policy, leading to persistent inflation, is often inconsistent, untrustworthy, and unpredictable. Algorithmic stable coins enabled by blockchain technology are promising in solving this problem. Algorithmic stable coins utilize a monetary policy that is entirely rule-based. However, there is little understanding about how to optimize the rule. We propose a model that trade-offs between the price and supply stability. We further study the comparative statistics by varying several design features. Finally, we discuss the empirical implications and further research for industry applications.
We review the construction of the supersymmetric sigma model for unitary maps, using the color- flavor transformation. We then illustrate applications by three case studies in quantum chaos. In two of these cases, general Floquet maps and quantum graphs, we show that universal spectral fluctuations arise provided the pertinent classical dynamics are fully chaotic (ergodic and with decay rates sufficiently gapped away from zero). In the third case, the kicked rotor, we show how the existence of arbitrarily long-lived modes of excitation (diffusion) precludes universal fluctuations and entails quantum localization.
In the present work we investigate phase correlations by recourse to the Shannon entropy. Using theoretical arguments we show that the entropy provides an accurate measure of phase correlations in any dynamical system, in particular when dealing with a chaotic diffusion process. We apply this approach to different low dimensional maps in order to show that indeed the entropy is very sensitive to the presence of correlations among the successive values of angular variables, even when it is weak. Later on, we apply this approach to unveil strong correlations in the time evolution of the phases involved in the Arnolds Hamiltonian that lead to anomalous diffusion, particularly when the perturbation parameters are comparatively large. The obtained results allow us to discuss the validity of several approximations and assumptions usually introduced to derive a local diffusion coefficient in multidimensional near--integrable Hamiltonian systems, in particular the so-called reduced stochasticity approximation.
We study the chaotic dynamics of graphene structures, considering both a periodic, defect free, graphene sheet and graphene nanoribbons (GNRs) of various widths. By numerically calculating the maximum Lyapunov exponent, we quantify the chaoticity for a spectrum of energies in both systems. We find that for all cases, the chaotic strength increases with the energy density, and that the onset of chaos in graphene is slow, becoming evident after more than $10^4$ natural oscillations of the system. For the GNRs, we also investigate the impact of the width and chirality (armchair or zigzag edges) on their chaotic behavior. Our results suggest that due to the free edges the chaoticity of GNRs is stronger than the periodic graphene sheet, and decreases by increasing width, tending asymptotically to the bulk value. In addition, the chaotic strength of armchair GNRs is higher than a zigzag ribbon of the same width. Further, we show that the composition of ${}^{12}C$ and ${}^{13}C$ carbon isotopes in graphene has a minor impact on its chaotic strength.
When implemented in the digital domain with time, space and value discretized in the binary form, many good dynamical properties of chaotic systems in continuous domain may be degraded or even diminish. To measure the dynamic complexity of a digital chaotic system, the dynamics can be transformed to the form of a state-mapping network. Then, the parameters of the network are verified by some typical dynamical metrics of the original chaotic system in infinite precision, such as Lyapunov exponent and entropy. This article reviews some representative works on the network-based analysis of digital chaotic dynamics and presents a general framework for such analysis, unveiling some intrinsic relationships between digital chaos and complex networks. As an example for discussion, the dynamics of a state-mapping network of the Logistic map in a fixed-precision computer is analyzed and discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا