No Arabic abstract
We consider Laplacian Growth of self-similar domains in different geometries. Self-similarity determines the analytic structure of the Schwarz function of the moving boundary. The knowledge of this analytic structure allows us to derive the integral equation for the conformal map. It is shown that solutions to the integral equation obey also a second order differential equation which is the one dimensional Schroedinger equation with the sinh inverse square potential. The solutions, which are expressed through the Gauss hypergeometric function, characterize the geometry of self-similar patterns in a wedge. We also find the potential for the Coulomb gas representation of the self-similar Laplacian growth in a wedge and calculate the corresponding free energy.
A new class of solutions to Laplacian growth with zero surface tension is presented and shown to contain all other known solutions as special or limiting cases. These solutions, which are time-dependent conformal maps with branch cuts inside the unit circle, are governed by a nonlinear integral equation and describe oil fjords with non-parallel walls in viscous fingering experiments in Hele-Shaw cells. Integrals of motion for the multi-cut Laplacian growth solutions in terms of singularities of the Schwarz function are found, and the dynamics of densities (jumps) on the cuts are derived. The subclass of these solutions with linear Cauchy densities on the cuts of the Schwarz function is of particular interest, because in this case the integral equation for the conformal map becomes linear. These solutions can also be of physical importance by representing oil/air interfaces, which form oil fjords with a constant opening angle, in accordance with recent experiments in a Hele-shaw cell.
The Laplacian growth (the Hele-Shaw problem) of multi-connected domains in the case of zero surface tension is proven to be equivalent to an integrable systems of Whitham equations known in soliton theory. The Whitham equations describe slowly modulated periodic solutions of integrable hierarchies of nonlinear differential equations. Through this connection the Laplacian growth is understood as a flow in the moduli space of Riemann surfaces.
We examine the effect of dissipation on traveling waves in nonlinear dispersive systems modeled by Benjamin- Bona- Mahony (BBM)-like equations. In the absence of dissipation the BBM-like equations are found to support soliton and compacton/anticompacton solutions depending on whether the dispersive term is linear or nonlinear. We study the influence of increasing nonlinearity of the medium on the soliton- and compacton dynamics. The dissipative effect is found to convert the solitons either to undular bores or to shock-like waves depending on the degree of nonlinearity of the equations. The anticompacton solutions are also transformed to undular bores by the effect of dissipation. But the compactons tend to vanish due to viscous effects. The local oscillatory structures behind the bores and/or shock-like waves in the case of solitons and anticompactons are found to depend sensitively both on the coefficient of viscosity and solution of the unperturbed problem.
We address the degree of universality of the Fermi-Pasta-Ulam recurrence induced by multisoliton fission from a harmonic excitation by analysing the case of the semiclassical defocusing nonlinear Schrodinger equation, which models nonlinear wave propagation in a variety of physical settings. Using a suitable Wentzel-Kramers-Brillouin approach to the solution of the associated scattering problem we accurately predict, in full analytical way, the number and the features (amplitude and velocity) of soliton-like excitations emerging post-breaking, as a function of the dispersion smallness parameter. This also permits to predict and analyse the near-recurrences, thereby inferring the universal character of the mechanism originally discovered for the Korteweg-deVries equation. We show, however, that important differences exist between the two models, arising from the different scaling rules obeyed by the soliton velocities.
With the assistance of one fold Darboux transformation formula, we derive rogue wave solutions of the complex modified Korteweg-de Vries equation on an elliptic function background. We employ an algebraic method to find the necessary squared eigenfunctions and eigenvalues. To begin we construct the elliptic function background. Then, on top of this background, we create a rogue wave. We demonstrate the outcome for three distinct elliptic modulus values. We find that when we increase the modulus value the amplitude of rogue waves on the dn-periodic background decreases whereas it increases in the case of cn-periodic background.