No Arabic abstract
We address the occurrence of narrow planetary rings under the interaction with shepherds. Our approach is based on a Hamiltonian framework of non-interacting particles where open motion (escape) takes place, and includes the quasi-periodic perturbations of the shepherds Kepler motion with small and zero eccentricity. We concentrate in the phase-space structure and establish connections with properties like the eccentricity, sharp edges and narrowness of the ring. Within our scattering approach, the organizing centers necessary for the occurrence of the rings are stable periodic orbits, or more generally, stable tori. In the case of eccentric motion of the shepherd, the rings are narrower and display a gap which defines different components of the ring.
The phase-space volume of regions of regular or trapped motion, for bounded or scattering systems with two degrees of freedom respectively, displays universal properties. In particular, drastic reductions in the volume (gaps) are observed at specific values of a control parameter. Using the stability resonances we show that they, and not the mean-motion resonances, account for the position of these gaps. For more degrees of freedom, exciting these resonances divides the regions of trapped motion. For planetary rings, we demonstrate that this mechanism yields rings with multiple components.
We address the occurrence of narrow planetary rings and some of their structural properties, in particular when the rings are shepherded. We consider the problem as Hamiltonian {it scattering} of a large number of non-interacting massless point particles in an effective potential. Using the existence of stable motion in scattering regions in this set up, we describe a mechanism in phase space for the occurrence of narrow rings and some consequences in their structure. We illustrate our approach with three examples. We find eccentric narrow rings displaying sharp edges, variable width and the appearance of distinct ring components (strands) which are spatially organized and entangled (braids). We discuss the relevance of our approach for narrow planetary rings.
It is shown that the Husimi representations of chaotic eigenstates are strongly correlated along classical trajectories. These correlations extend across the whole system size and, unlike the corresponding eigenfunction correlations in configuration space, they persist in the semiclassical limit. A quantitative theory is developed on the basis of Gaussian wavepacket dynamics and random-matrix arguments. The role of symmetries is discussed for the example of time-reversal invariance.
We establish a hierarchical ordering of periodic orbits in a strongly coupled multidimensional Hamiltonian system. Phase space structures can be reconstructed quantitatively from the knowledge of periodic orbits alone. We illustrate our findings for the hydrogen atom in crossed electric and magnetic fields.
Recently the phase space structures governing reaction dynamics in Hamiltonian systems have been identified and algorithms for their explicit construction have been developed. These phase space structures are induced by saddle type equilibrium points which are characteristic for reaction type dynamics. Their construction is based on a Poincar{e}-Birkhoff normal form. Using tools from the geometric theory of Hamiltonian systems and their reduction we show in this paper how the construction of these phase space structures can be generalized to the case of the relative equilibria of a rotational symmetry reduced $N$-body system. As rotations almost always play an important role in the reaction dynamics of molecules the approach presented in this paper is of great relevance for applications.