Do you want to publish a course? Click here

Phase-space correlations of chaotic eigenstates

79   0   0.0 ( 0 )
 Added by Holger Schanz
 Publication date 2004
  fields Physics
and research's language is English
 Authors Holger Schanz




Ask ChatGPT about the research

It is shown that the Husimi representations of chaotic eigenstates are strongly correlated along classical trajectories. These correlations extend across the whole system size and, unlike the corresponding eigenfunction correlations in configuration space, they persist in the semiclassical limit. A quantitative theory is developed on the basis of Gaussian wavepacket dynamics and random-matrix arguments. The role of symmetries is discussed for the example of time-reversal invariance.



rate research

Read More

In the present work we investigate phase correlations by recourse to the Shannon entropy. Using theoretical arguments we show that the entropy provides an accurate measure of phase correlations in any dynamical system, in particular when dealing with a chaotic diffusion process. We apply this approach to different low dimensional maps in order to show that indeed the entropy is very sensitive to the presence of correlations among the successive values of angular variables, even when it is weak. Later on, we apply this approach to unveil strong correlations in the time evolution of the phases involved in the Arnolds Hamiltonian that lead to anomalous diffusion, particularly when the perturbation parameters are comparatively large. The obtained results allow us to discuss the validity of several approximations and assumptions usually introduced to derive a local diffusion coefficient in multidimensional near--integrable Hamiltonian systems, in particular the so-called reduced stochasticity approximation.
Two types of phase synchronization (accordingly, two scenarios of breaking phase synchronization) between coupled stochastic oscillators are shown to exist depending on the discrepancy between the control parameters of interacting oscillators, as in the case of classical synchronization of periodic oscillators. If interacting stochastic oscillators are weakly detuned, the phase coherency of the attractors persists when phase synchronization breaks. Conversely, if the control parameters differ considerably, the chaotic attractor becomes phase-incoherent under the conditions of phase synchronization break.
This paper presents a phase description of chaotic dynamics for the study of chaotic phase synchronization. A prominent feature of the proposed description is that it systematically incorporates the dynamics of the non-phase variables inherent in the system. Taking these non-phase dynamics into account is essential for capturing the complicated nature of chaotic phase synchronization, even in a qualitative manner. We numerically verified the validity of the proposed description for the R{o}ssler and Lorenz oscillators, and found that our method provides an accurate description of the characteristic distorted shapes of the synchronization regions of their chaotic oscillators. Furthermore, the proposed description allowed us to systematically explain the origin of this distortion.
We studied correlations between different nodes in small electronic networks with active links operating as jitter generators. Unexpectedly, we found that under certain conditions signals from the most remote nodes in the networks correlate stronger than signals from all of the other coupled nodes. The phenomenon resembles selective remote correlation between electrons in the Cooper pairs or entangled particles.
All physical systems are affected by some noise that limits the resolution that can be attained in partitioning their state space. For chaotic, locally hyperbolic flows, this resolution depends on the interplay of the local stretching/contraction and the smearing due to noise. We propose to determine the `finest attainable partition for a given hyperbolic dynamical system and a given weak additive white noise, by computing the local eigenfunctions of the adjoint Fokker-Planck operator along each periodic point, and using overlaps of their widths as the criterion for an optimal partition. The Fokker-Planck evolution is then represented by a finite transition graph, whose spectral determinant yields time averages of dynamical observables. Numerical tests of such `optimal partition of a one-dimensional repeller support our hypothesis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا