Do you want to publish a course? Click here

Strange correlations between remote nodes in networks comprising chaotic links

104   0   0.0 ( 0 )
 Added by Vladimir Manasson
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We studied correlations between different nodes in small electronic networks with active links operating as jitter generators. Unexpectedly, we found that under certain conditions signals from the most remote nodes in the networks correlate stronger than signals from all of the other coupled nodes. The phenomenon resembles selective remote correlation between electrons in the Cooper pairs or entangled particles.



rate research

Read More

78 - Holger Schanz 2004
It is shown that the Husimi representations of chaotic eigenstates are strongly correlated along classical trajectories. These correlations extend across the whole system size and, unlike the corresponding eigenfunction correlations in configuration space, they persist in the semiclassical limit. A quantitative theory is developed on the basis of Gaussian wavepacket dynamics and random-matrix arguments. The role of symmetries is discussed for the example of time-reversal invariance.
In the present work we investigate phase correlations by recourse to the Shannon entropy. Using theoretical arguments we show that the entropy provides an accurate measure of phase correlations in any dynamical system, in particular when dealing with a chaotic diffusion process. We apply this approach to different low dimensional maps in order to show that indeed the entropy is very sensitive to the presence of correlations among the successive values of angular variables, even when it is weak. Later on, we apply this approach to unveil strong correlations in the time evolution of the phases involved in the Arnolds Hamiltonian that lead to anomalous diffusion, particularly when the perturbation parameters are comparatively large. The obtained results allow us to discuss the validity of several approximations and assumptions usually introduced to derive a local diffusion coefficient in multidimensional near--integrable Hamiltonian systems, in particular the so-called reduced stochasticity approximation.
182 - Liao Xuhong , Xia Qinzhi , Qian Yu 2010
Oscillatory dynamics of complex networks has recently attracted great attention. In this paper we study pattern formation in oscillatory complex networks consisting of excitable nodes. We find that there exist a few center nodes and small skeletons for most oscillations. Complicated and seemingly random oscillatory patterns can be viewed as well-organized target waves propagating from center nodes along the shortest paths, and the shortest loops passing through both the center nodes and their driver nodes play the role of oscillation sources. Analyzing simple skeletons we are able to understand and predict various essential properties of the oscillations and effectively modulate the oscillations. These methods and results will give insights into pattern formation in complex networks, and provide suggestive ideas for studying and controlling oscillations in neural networks.
200 - Yian Ma , Qijun Tan , Ruoshi Yuan 2012
In this paper, we demonstrate, first in literature known to us, that potential functions can be constructed in continuous dissipative chaotic systems and can be used to reveal their dynamical properties. To attain this aim, a Lorenz-like system is proposed and rigorously proved chaotic for exemplified analysis. We explicitly construct a potential function monotonically decreasing along the systems dynamics, revealing the structure of the chaotic strange attractor. The potential function can have different forms of construction. We also decompose the dynamical system to explain for the different origins of chaotic attractor and strange attractor. Consequently, reasons for the existence of both chaotic nonstrange attractors and nonchaotic strange attractors are clearly discussed within current decomposition framework.
Stability of synchronization in delay-coupled networks of identical units generally depends in a complicated way on the coupling topology. We show that for large coupling delays synchronizability relates in a simple way to the spectral properties of the network topology. The master stability function used to determine stability of synchronous solutions has a universal structure in the limit of large delay: it is rotationally symmetric around the origin and increases monotonically with the radius in the complex plane. This allows a universal classification of networks with respect to their synchronization properties and solves the problem of complete synchronization in networks with strongly delayed coupling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا