No Arabic abstract
We show that the spectral fluctuations of the Two-Body Random Ensemble (TBRE) exhibit 1/f noise. This result supports a recent conjecture stating that chaotic quantum systems are characterized by 1/f noise in their energy level fluctuations. After suitable individual averaging, we also study the distribution of the exponent alpha in the 1/f^{alpha} noise for the individual members of the ensemble. Almost all the exponents lie inside a narrow interval around alpha=1 suggesting that also individual members exhibit 1/f noise, provided they are individually unfolded
Two-dimensional electron or hole systems in semiconductors offer the unique opportunity to investigate the physics of strongly interacting fermions. We have measured the 1/f resistance noise of two-dimensional hole systems in high mobility GaAs quantum wells, at densities below that of the metal-insulator transition (MIT) at zero magnetic field. Two techniques voltage and current fluctuations were used. The normalized noise power SR/R2 increases strongly when the hole density or the temperature are decreased. The temperature dependence is steeper at the lowest densities. This contradicts the predictions of the modulation approach in the strong localization hopping transport regime. The hypothesis of a second order phase transition or percolation transition at a density below that of the MIT is thus reinforced.
Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by Boltzmanns factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmanns factor is extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains maximum entropy during equilibrium fluctuations. Indeed, as with the usual resolution of Gibbs paradox that avoids net entropy reduction during reversible processes, the correction yields the statistics of indistinguishable particles. The correction also ensures conservation of energy if an instantaneous contribution from local entropy is included. Thus, a common mechanism for 1/f noise comes from assuming that finite-size fluctuations strictly obey the laws of thermodynamics, even in small parts of a large system. Empirical evidence for the model comes from its ability to match the measured temperature dependence of the spectral-density exponents in several metals, and to show non-Gaussian fluctuations characteristic of nanoscale systems.
It was recently conjectured that 1/f noise is a fundamental characteristic of spectral fluctuations in chaotic quantum systems. This conjecture is based on the behavior of the power spectrum of the excitation energy fluctuations, which is different for chaotic and integrable systems. Using random matrix theory we derive theoretical expressions that explain the power spectrum behavior at all frequencies. These expressions reproduce to a good approximation the power laws of type 1/f (1/f^2) characteristics of chaotic (integrable) systems, observed in almost the whole frequency domain. Although we use random matrix theory to derive these results, they are also valid for semiclassical systems.
We have measured the resistance and the 1/f resistance noise of a two-dimensional low density hole system in a high mobility GaAs quantum well at low temperature. At densities lower than the metal-insulator transition one, the temperature dependence of the resistance is either power-like or simply activated. The noise decreases when the temperature or the density increase. These results contradict the standard description of independent particles in the strong localization regime. On the contrary, they agree with the percolation picture suggested by higher density results. The physical nature of the system could be a mixture of a conducting and an insulating phase. We compare our results with those of composite thin films.
We present a new method to measure 1/f noise in Josephson quantum bits (qubits) that yields low-frequency spectra below 1Hz. Comparison of noise taken at positive and negative bias of a phase qubit shows the dominant noise source to be flux noise and not junction critical-current noise, with a magnitude similar to that measured previously in other systems. Theoretical calculations show that the level of flux noise is not compatible with the standard model of noise from two-level state defects in the surface oxides of the films.