Do you want to publish a course? Click here

Alternative pathways of dewetting for a thin two-layer film of soft matter

55   0   0.0 ( 0 )
 Added by Andrey Pototsky
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider two stacked ultra-thin layers of different liquids on a solid substrate. Using long-wave theory, we derive coupled evolution equations for the free liquid-liquid and liquid-gas interfaces. Linear and non-linear analyses show that depending on the long-range van-der-Waals forces and the ratio of the layer thicknesses, the system follows different pathways of dewetting. The instability may be driven by varicose or zigzag modes and leads to film rupture either at the liquid-gas interface or at the substrate.



rate research

Read More

The objective of this work is to study the role of shear on the rupture of ultrathin polymer films. To do so, a finite-difference numerical scheme for the resolution of the thin film equation was set up taking into account capillary and van der Waals (vdW) forces. This method was validated by comparing the dynamics obtained from an initial harmonic perturbation to established theoretical predictions. With the addition of shear, three regimes have then been evidenced as a function of the shear rate. In the case of low shear rates the rupture is delayed when compared to the no-shear problem, while at higher shear rates it is even suppressed: the perturbed interface goes back to its unperturbed state over time. In between these two limiting regimes, a transient one in which shear and vdW forces balance each other, leading to a non-monotonic temporal evolution of the perturbed interface, has been identified. While a linear analysis is sufficient to describe the rupture time in the absence of shear, the nonlinearities appear to be essential otherwise.
We study numerically the effect of thermal fluctuations and of variable fluid-substrate interactions on the spontaneous dewetting of thin liquid films. To this aim, we use a recently developed lattice Boltzmann method for thin liquid film flows, equipped with a properly devised stochastic term. While it is known that thermal fluctuations yield shorter rupture times, we show that this is a general feature of hydrophilic substrates, irrespective of the contact angle. The ratio between deterministic and stochastic rupture times, though, decreases with $theta$. Finally, we discuss the case of fluctuating thin film dewetting on chemically patterned substrates and its dependence on the form of the wettability gradients.
We study the dewetting of liquid films capped by a thin elastomeric layer. When the tension in the elastomer is isotropic, circular holes grow at a rate which decreases with increasing tension. The morphology of holes and rim stability can be controlled by changing the boundary conditions and tension in the capping film. When the capping film is prepared with a biaxial tension, holes form with a non-circular shape elongated along the high tension axis. With suitable choice of elastic boundary conditions, samples can even be designed such that square holes appear.
233 - S. Nesic , R. Cuerno , E. Moro 2015
The spontaneous formation of droplets via dewetting of a thin fluid film from a solid substrate allows for materials nanostructuring, under appropriate experimental control. While thermal fluctuations are expected to play a role in this process, their relevance has remained poorly understood, particularly during the nonlinear stages of evolution. Within a stochastic lubrication framework, we show that thermal noise speeds up and substantially influences the formation and evolution of the droplet arrangement. As compared with their deterministic counterparts, for a fixed spatial domain, stochastic systems feature a smaller number of droplets, with a larger variability in sizes and space distribution. Finally, we discuss the influence of stochasticity on droplet coarsening for very long times.
Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces - tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for inter-surface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces - namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics - facilitates this non-classical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie-Wenzel transitions on superhydrophobic surfaces, to hydrophobically-driven biomolecular folding and assembly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا