Do you want to publish a course? Click here

Front speed enhancement in cellular flows

62   0   0.0 ( 0 )
 Added by Cencini Massimo
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

The problem of front propagation in a stirred medium is addressed in the case of cellular flows in three different regimes: slow reaction, fast reaction and geometrical optics limit. It is well known that a consequence of stirring is the enhancement of front speed with respect to the non-stirred case. By means of numerical simulations and theoretical arguments we describe the behavior of front speed as a function of the stirring intensity, $U$. For slow reaction, the front propagates with a speed proportional to $U^{1/4}$, conversely for fast reaction the front speed is proportional to $U^{3/4}$. In the geometrical optics limit, the front speed asymptotically behaves as $U/ln U$.



rate research

Read More

74 - M. Abel , A. Celani , D. Vergni 2000
The problem of front propagation in flowing media is addressed for laminar velocity fields in two dimensions. Three representative cases are discussed: stationary cellular flow, stationary shear flow, and percolating flow. Production terms of Fisher-Kolmogorov-Petrovskii-Piskunov type and of Arrhenius type are considered under the assumption of no feedback of the concentration on the velocity. Numerical simulations of advection-reaction-diffusion equations have been performed by an algorithm based on discrete-time maps. The results show a generic enhancement of the speed of front propagation by the underlying flow. For small molecular diffusivity, the front speed $V_f$ depends on the typical flow velocity $U$ as a power law with an exponent depending on the topological properties of the flow, and on the ratio of reactive and advective time-scales. For open-streamline flows we find always $V_f sim U$, whereas for cellular flows we observe $V_f sim U^{1/4}$ for fast advection, and $V_f sim U^{3/4}$ for slow advection.
Front propagation in two dimensional steady and unsteady cellular flows is investigated in the limit of very fast reaction and sharp front, i.e., in the geometrical optics limit. In the steady case, by means of a simplified model, we provide an analytical approximation for the front speed, $v_{{scriptsize{f}}}$, as a function of the stirring intensity, $U$, in good agreement with the numerical results and, for large $U$, the behavior $v_{{scriptsize{f}}}sim U/log(U)$ is predicted. The large scale of the velocity field mainly rules the front speed behavior even in the presence of smaller scales. In the unsteady (time-periodic) case, the front speed displays a phase-locking on the flow frequency and, albeit the Lagrangian dynamics is chaotic, chaos in front dynamics only survives for a transient. Asymptotically the front evolves periodically and chaos manifests only in the spatially wrinkled structure of the front.
We demonstrate that nonlocal coupling strongly influences the dynamics of fronts connecting two equivalent states. In two prototype models we observe a large amplification in the interaction strength between two opposite fronts increasing front velocities several orders of magnitude. By analyzing the spatial dynamics we prove that way beyond quantitative effects, nonlocal terms can also change the overall qualitative picture by inducing oscillations in the front profile. This leads to a mechanism for the formation of localized structures not present for local interactions. Finally, nonlocal coupling can induce a steep broadening of localized structures, eventually annihilating them.
The Refined Kolmogorov Similarity Hypothesis is a valuable tool for the description of intermittency in isotropic conditions. For flows in presence of a substantial mean shear, the nature of intermittency changes since the process of energy transfer is affected by the turbulent kinetic energy production associated with the Reynolds stresses. In these conditions a new form of refined similarity law has been found able to describe the increased level of intermittency which characterizes shear dominated flows. Ideally a length scale associated with the mean shear separates the two ranges, i.e. the classical Kolmogorov-like inertial range, below, and the shear dominated range, above. However, the data analyzed in previous papers correspond to conditions where the two scaling regimes can only be observed individually. In the present letter we give evidence of the coexistence of the two regimes and support the conjecture that the statistical properties of the dissipation field are practically insensible to the mean shear. This allows for a theoretical prediction of the scaling exponents of structure functions in the shear dominated range based on the known intermittency corrections for isotropic flows. The prediction is found to closely match the available numerical and experimental data.
We study a swimming undulating sheet in the isotropic phase of an active nematic liquid crystal. Activity changes the effective shear viscosity, reducing it to zero at a critical value of activity. Expanding in the sheet amplitude, we find that the correction to the swimming speed due to activity is inversely proportional to the effective shear viscosity. Our perturbative calculation becomes invalid near the critical value of activity; using numerical methods to probe this regime, we find that activity enhances the swimming speed by an order of magnitude compared to the passive case.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا