No Arabic abstract
The Refined Kolmogorov Similarity Hypothesis is a valuable tool for the description of intermittency in isotropic conditions. For flows in presence of a substantial mean shear, the nature of intermittency changes since the process of energy transfer is affected by the turbulent kinetic energy production associated with the Reynolds stresses. In these conditions a new form of refined similarity law has been found able to describe the increased level of intermittency which characterizes shear dominated flows. Ideally a length scale associated with the mean shear separates the two ranges, i.e. the classical Kolmogorov-like inertial range, below, and the shear dominated range, above. However, the data analyzed in previous papers correspond to conditions where the two scaling regimes can only be observed individually. In the present letter we give evidence of the coexistence of the two regimes and support the conjecture that the statistical properties of the dissipation field are practically insensible to the mean shear. This allows for a theoretical prediction of the scaling exponents of structure functions in the shear dominated range based on the known intermittency corrections for isotropic flows. The prediction is found to closely match the available numerical and experimental data.
Recent developments in turbulence are focused on the effect of large scale anisotropy on the small scale statistics of velocity increments. According to Kolmogorov, isotropy is recovered in the large Reynolds number limit as the scale is reduced and, in the so-called inertial range, universal features -namely the scaling exponents of structure functions - emerge clearly. However this picture is violated in a number of cases, typically in the high shear region of wall bounded flows. The common opinion ascribes this effect to the contamination of the inertial range by the larger anisotropic scales, i.e. the residual anisotropy is assumed as a weak perturbation of an otherwise isotropic dynamics. In this case, given the rotational invariance of the Navier-Stokes equations, the isotropic component of the structure functions keeps the same exponents of isotropic turbulence. This kind of reasoning fails when the anisotropic effects are strong as in the production range of shear dominated flows. This regime is analyzed here by means of both numerical and experimental data for a homogeneous shear flow. A well defined scaling behavior is found to exist, with exponents which differ substantially from those of classical isotropic turbulence. Contrary to what predicted by the perturbation approach, such a deep alteration concerns the isotropic sector itself. The general validity of these results is discussed in the context of turbulence near solid walls, where more appropriate closure models for the coarse grained Navier-Stokes equations would be advisable.
In this paper we discuss the dynamical features of intermittent fluctuations in homogeneous shear flow turbulence. In this flow the energy cascade is strongly modified by the production of turbulent kinetic energy related to the presence of vortical structures induced by the shear. By using direct numerical simulations, we show that the refined Kolmogorov similarity is broken and a new form of similarity is observed, in agreement to previous results obtained in turbulent boundary layers. As a consequence, the intermittency of velocity fluctuations increases with respect to homogeneous and isotropic turbulence. We find here that the statistical properties of the energy dissipation are practically unchanged with respect to homogeneous isotropic conditions, while the increased intermittency is entirely captured in terms of the new similarity law.
We consider mean-field dynamo models with fluctuating alpha effect, both with and without shear. The alpha effect is chosen to be Gaussian white noise with zero mean and given covariance. We show analytically that the mean magnetic field does not grow, but, in an infinitely large domain, the mean-squared magnetic field shows exponential growth of the fastest growing mode at a rate proportional to the shear rate, which agrees with earlier numerical results of Yousef et al (2008) and recent analytical treatment by Heinemann et al (2011) who use a method different from ours. In the absence of shear, an incoherent alpha^2 dynamo may also be possible. We further show by explicit calculation of the growth rate of third and fourth order moments of the magnetic field that the probability density function of the mean magnetic field generated by this dynamo is non-Gaussian.
We study the development of coherent structures in local simulations of the magnetorotational instability in accretion discs in regimes of on-off intermittency. In a previous paper [Chian et al., Phys. Rev. Lett. 104, 254102 (2010)], we have shown that the laminar and bursty states due to the on-off spatiotemporal intermittency in a one-dimensional model of nonlinear waves correspond, respectively, to nonattracting coherent structures with higher and lower degrees of amplitude-phase synchronization. In this paper we extend these results to a three-dimensional model of magnetized Keplerian shear flows. Keeping the kinetic Reynolds number and the magnetic Prandtl number fixed, we investigate two different intermittent regimes by varying the plasma beta parameter. The first regime is characterized by turbulent patterns interrupted by the recurrent emergence of a large-scale coherent structure known as two-channel flow, where the state of the system can be described by a single Fourier mode. The second regime is dominated by the turbulence with sporadic emergence of coherent structures with shapes that are reminiscent of a perturbed channel flow. By computing the Fourier power and phase spectral entropies in three-dimensions, we show that the large-scale coherent structures are characterized by a high degree of amplitude-phase synchronization.
In this paper, the scaling-law vector calculus, which is related to the connection between the vector calculus and the scaling law in fractal geometry, is addressed based on the Leibniz derivative and Stieltjes integral for the first time. The Gauss-Ostrogradsky-like theorem, Stokes-like theorem, Green-like theorem, and Green-like identities are considered in the sense of the scaling-law vector calculus. The Navier-Stokes-like equations are obtained in detail. The obtained result is as a potentially mathematical tool proposed to develop an important way of approaching this challenge for the scaling-law flows.