Do you want to publish a course? Click here

Real-Space Adaptive-Coordinate Electronic Structure Calculations

62   0   0.0 ( 0 )
 Added by Francois Gygi
 Publication date 1995
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a real-space adaptive-coordinate method, which combines the advantages of the finite-difference approach with the accuracy and flexibility of the adaptive coordinate method. The discretized Kohn-Sham equations are written in generalized curvilinear coordinates and solved self-consistently by means of an iterative approach. The Poisson equation is solved in real space using the Multigrid algorithm. We implemented the method on a massively parallel computer, and applied it to the calculation of the equilibrium geometry and harmonic vibrational frequencies of the CO_2, CO, N_2 and F_2 molecules, yielding excellent agreement with the results of accurate quantum chemistry and Local Density Functional calculations.



rate research

Read More

A characteristic feature of the state-of-the-art of real-space methods in electronic structure calculations is the diversity of the techniques used in the discretization of the relevant partial differential equations. In this context, the main approaches include finite-difference methods, various types of finite-elements and wavelets. This paper reports on the results of several code development projects that approach problems related to the electronic structure using these three different discretization methods. We review the ideas behind these methods, give examples of their applications, and discuss their similarities and differences.
179 - Eva Pavarini 2014
The LDA+DMFT method is a very powerful tool for gaining insight into the physics of strongly correlated materials. It combines traditional ab-initio density-functional techniques with the dynamical mean-field theory. The core aspects of the method are (i) building material-specific Hubbard-like many-body models and (ii) solving them in the dynamical mean-field approximation. Step (i) requires the construction of a localized one-electron basis, typically a set of Wannier functions. It also involves a number of approximations, such as the choice of the degrees of freedom for which many-body effects are explicitly taken into account, the scheme to account for screening effects, or the form of the double-counting correction. Step (ii) requires the dynamical mean-field solution of multi-orbital generalized Hubbard models. Here central is the quantum-impurity solver, which is also the computationally most demanding part of the full LDA+DMFT approach. In this chapter I will introduce the core aspects of the LDA+DMFT method and present a prototypical application.
We introduce a spectral density functional theory which can be used to compute energetics and spectra of real strongly--correlated materials using methods, algorithms and computer programs of the electronic structure theory of solids. The approach considers the total free energy of a system as a functional of a local electronic Green function which is probed in the region of interest. Since we have a variety of notions of locality in our formulation, our method is manifestly basis--set dependent. However, it produces the exact total energy and local excitational spectrum provided that the exact functional is extremized. The self--energy of the theory appears as an auxiliary mass operator similar to the introduction of the ground--state Kohn--Sham potential in density functional theory. It is automatically short--ranged in the same region of Hilbert space which defines the local Green function. We exploit this property to find good approximations to the functional. For example, if electronic self--energy is known to be local in some portion of Hilbert space, a good approximation to the functional is provided by the corresponding local dynamical mean--field theory. A simplified implementation of the theory is described based on the linear muffin--tin orbital method widely used in electronic strucure calculations. We demonstrate the power of the approach on the long--standing problem of the anomalous volume expansion of metallic plutonium.
We present SPARC: Simulation Package for Ab-initio Real-space Calculations. SPARC can perform Kohn-Sham density functional theory calculations for isolated systems such as molecules as well as extended systems such as crystals and surfaces, in both static and dynamic settings. It is straightforward to install/use and highly competitive with state-of-the-art planewave codes, demonstrating comparable performance on a small number of processors and increasing advantages as the number of processors grows. Notably, SPARC brings solution times down to a few seconds for systems with $mathcal{O}(100-500)$ atoms on large-scale parallel computers, outperforming planewave counterparts by an order of magnitude and more.
We propose an adaptive planewave method for eigenvalue problems in electronic structure calculations. The method combines a priori convergence rates and accurate a posteriori error estimates into an effective way of updating the energy cut-off for planewave discretizations, for both linear and nonlinear eigenvalue problems. The method is error controllable for linear eigenvalue problems in the sense that for a given required accuracy, an energy cut-off for which the solution matches the target accuracy can be reached efficiently. Further, the method is particularly promising for nonlinear eigenvalue problems in electronic structure calculations as it shall reduce the cost of early iterations in self-consistent algorithms. We present some numerical experiments for both linear and nonlinear eigenvalue problems. In particular, we provide electronic structure calculations for some insulator and metallic systems simulated with Kohn--Sham density functional theory (DFT) and the projector augmented wave (PAW) method, illustrating the efficiency and potential of the algorithm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا