Do you want to publish a course? Click here

Ab initio studies of structural instabilities in magnesium silicate perovskite

66   0   0.0 ( 0 )
 Added by M. Warren
 Publication date 1995
  fields Physics
and research's language is English




Ask ChatGPT about the research

Density-functional simulations are used to calculate structural properties and high-symmetry phonons of the hypothetical cubic phase, the stable orthorhombic phase and an intermediate tetragonal phase of magnesium silicate perovskite. We show that the structure of the stable phase is well described by freezing in a small number of unstable phonons into the cubic phase. We use the frequencies of these unstable modes to estimate transition temperatures for cubic--tetragonal and tetragonal--orthorhombic phase transitions. These are investigated further to find that the coupling with the strain suggests that phonons give a better representation than rigid unit modes. The phonons of an intermediate tetragonal phase were found to be stable except for two rotational modes. The eigenvectors of the most unstable mode of each of the cubic and tetragonal phases account for all the positional parameters of the orthorhombic phase. The phase boundary for the orthorhombic--tetragonal transition intersects possible mantle geotherms, suggesting that the tetragonal phase may be present in the lower mantle.



rate research

Read More

The first part of this article centers on the fact that key features of the dynamical response of weakly-correlated materials (the alkalis, Al), have been found experimentally to differ qualitatively from simple-model behavior. In the absence of ab initio theory, the surprises embodied in the experimental data were imputed to effects of dynamical correlations. We summarize results of ab initio investigations of linear response, performed within time-dependent density-functional theory (TDDFT), in which the unexpected features of the observed spectra are shown to be due to band-structure effects. Contrary to conventional wisdom, the response cannot be understood universally, in terms of a simple scaling with the density, on going from metal to metal (e.g., through the alkali series) --even the shape of the dispersion curve for the plasmon energy is system-specific. The second part of this article starts out with the observation that a similar ab initio study of systems with more complex electronic structures would require the availability of a realistic approximation for the dynamical many-body kernel entering the density-response function in TDDFT. Thus, we outline a diagrammatic alternative, framed within the conserving-approximation method of Baym and Kadanoff. Using as a benchmark the band gap of Si obtained in the GW approximation, together with a diagrammatic (and conserving) solution of the ensuing Bethe-Salpeter equation, we discuss issues involving conservation laws, self-consistency, and sum rules. These conceptual issues are particularly important for the development of ab initio methods for the study of dynamical response and quasiparticle band structure of strongly-correlated materials. We argue that inclusion of short-range correlations absent in the GW approximation is a must, even in Si.
We calculate the spin-transfer torque in Fe/MgO/Fe tunnel junctions and compare the results to those for all-metallic junctions. We show that the spin-transfer torque is interfacial in the ferromagnetic layer to a greater degree than in all-metallic junctions. This result originates in the half metallic behavior of Fe for the $Delta_1$ states at the Brillouin zone center; in contrast to all-metallic structures, dephasing does not play an important role. We further show that it is possible to get a component of the torque that is out of the plane of the magnetizations and that is linear in the bias. However, observation of such a torque requires highly ideal samples. In samples with typical interfacial roughness, the torque is similar to that in all-metallic multilayers, although for different reasons.
We investigate the lattice and electronic structures of the bulk and surface of the prototypical layered topological insulators Bi$_2$Se$_3$ and Bi$_2$Te$_3$ using ab initio density functional methods, and systematically compare the results of different methods of including van der Waals (vdW) interactions. We show that the methods utilizing semi-empirical energy corrections yield accurate descriptions of these materials, with the most precise results obtained by properly accounting for the long-range tail of the vdW interactions. The bulk lattice constants, distances between quintuple layers and the Dirac velocity of the topological surface states (TSS) are all in excellent agreement with experiment. In Bi$_2$Te$_3$, hexagonal warping of the energy dispersion leads to complex spin textures of the TSS at moderate energies, while in Bi$_2$Se$_3$ these states remain almost perfectly helical away from the Dirac point, showing appreciable signs of hexagonal warping at much higher energies, above the minimum of the bulk conduction band. Our results establish a framework for unified and systematic self-consistent first principles calculations of topological insulators in bulk, slab and interface geometries, and provides the necessary first step towards ab initio modeling of topological heterostructures.
We investigate how different chemical environment influences magnetic properties of terbium(III) (Tb)-based single-molecule magnets (SMMs), using first-principles relativistic multireference methods. Recent experiments showed that Tb-based SMMs can have exceptionally large magnetic anisotropy and that they can be used for experimental realization of quantum information applications, with a judicious choice of chemical environment. Here, we perform complete active space self-consistent field (CASSCF) calculations including relativistic spin-orbit interaction (SOI) for representative Tb-based SMMs such as TbPc$_2$ and TbPcNc in three charge states. We calculate low-energy electronic structure from which we compute the Tb crystal-field parameters and construct an effective pseudospin Hamiltonian. Our calculations show that ligand type and fine points of molecular geometry do not affect the zero-field splitting, while the latter varies weakly with oxidation number. On the other hand, higher-energy levels have a strong dependence on all these characteristics. For neutral TbPc$_2$ and TbPcNc molecules, the Tb magnetic moment and the ligand spin are parallel to each other and the coupling strength between them does not depend much on ligand type and details of atomic structure. However, ligand distortion and molecular symmetry play a crucial role in transverse crystal-field parameters which lead to tunnel splitting. The tunnel splitting induces quantum tunneling of magnetization by itself or by combining with other processes. Our results provide insight into mechanisms of magnetization relaxation in the representative Tb-based SMMs.
Magnesium alanate Mg(AlH4)2 has recently raised interest as a potential material for hydrogen storage. We apply ab initio calculations to characterize structural, electronic and energetic properties of Mg(AlH4)2. Density functional theory calculations within the generalized gradient approximation (GGA) are used to optimize the geometry and obtain the electronic structure. The latter is also studied by quasi-particle calculations at the GW level. Mg(AlH4)2 is a large band gap insulator with a fundamental band gap of 6.5 eV. The hydrogen atoms are bonded in AlH4 complexes, whose states dominate both the valence and the conduction bands. On the basis of total energies, the formation enthalpy of Mg(AlH4)2 with respect to bulk magnesium, bulk aluminum and hydrogen gas is 0.17 eV/H2 (at T = 0). Including corrections due to the zero point vibrations of the hydrogen atoms this number decreases to 0.10 eV/H2. The enthalpy of the dehydrogenation reaction Mg(AlH4)2 -> MgH2 +2Al+3H2(g) is close to zero, which impairs the potential usefulness of magnesium alanate as a hydrogen storage material.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا