A theorem is derived which (i) provides a new class of subfactors which may be interpreted as generalized asymptotic subfactors, and which (ii) ensures the existence of two-dimensional local quantum field theories associated with certain modular invariant matrices.
Conformal inclusions of chiral conformal field theories, or more generally inclusions of quantum field theories, are described in the von Neumann algebraic setting by nets of subfactors, possibly with infinite Jones index if one takes non-rational theories into account. With this situation in mind, we study in a purely subfactor theoretical context a certain class of braided discrete subfactors with an additional commutativity constraint, that we call locality, and which corresponds to the commutation relations between field operators at space-like distance in quantum field theory. Examples of subfactors of this type come from taking a minimal action of a compact group on a factor and considering the fixed point subalgebra. We show that to every irreducible local discrete subfactor $mathcal{N}subsetmathcal{M}$ of type ${I!I!I}$ there is an associated canonical compact hypergroup (an invariant for the subfactor) which acts on $mathcal{M}$ by unital completely positive (ucp) maps and which gives $mathcal{N}$ as fixed points. To show this, we establish a duality pairing between the set of all $mathcal{N}$-bimodular ucp maps on $mathcal{M}$ and a certain commutative unital $C^*$-algebra, whose spectrum we identify with the compact hypergroup. If the subfactor has depth 2, the compact hypergroup turns out to be a compact group. This rules out the occurrence of compact emph{quantum} groups acting as global gauge symmetries in local conformal field theory.
Discrete subfactors include a particular class of infinite index subfactors and all finite index ones. A discrete subfactor is called local when it is braided and it fulfills a commutativity condition motivated by the study of inclusion of Quantum Field Theories in the algebraic Haag-Kastler setting. In [BDG21], we proved that every irreducible local discrete subfactor arises as the fixed point subfactor under the action of a canonical compact hypergroup. In this work, we prove a Galois correspondence between intermediate von Neumann algebras and closed subhypergroups, and we study the subfactor theoretical Fourier transform in this context. Along the way, we extend the main results concerning $alpha$-induction and $sigma$-restriction for braided subfactors previously known in the finite index case.
Motivated by noncommutative geometry and quantum physics, the concept of `metric operator field is introduced. Roughly speaking, a metric operator field is a vector field on a set with values in self tensor product of a bundle of C*-algebras, satisfying properties similar to an ordinary metric (distance function). It is proved that to any such object there naturally correspond a Banach *-algebra that we call Lipschitz algebra, a class of probabilistic metrics, and (under some conditions) a (nontrivial) continuous field of C*-algebras in the sense of Dixmier. It is proved that for metric operator fields with values in von Neumann algebras the associated Lipschitz algebras are dual Banach spaces, and under some conditions, they are not amenable Banach algebras. Some examples and constructions are considered. We also discuss very briefly a possible application to quantum gravity.
Canonical tensor product subfactors (CTPSs) describe, among other things, the embedding of chiral observables in two-dimensional conformal quantum field theories. A new class of CTPSs is constructed some of which are associated with certain modular invariants, thereby establishing the expected existence of the corresponding two-dimensional theories.
A systematic theory of product and diagonal states is developed for tensor products of $mathbb Z_2$-graded $*$-algebras, as well as $mathbb Z_2$-graded $C^*$-algebras. As a preliminary step to achieve this goal, we provide the construction of a {it fermionic $C^*$-tensor product} of $mathbb Z_2$-graded $C^*$-algebras. Twisted duals of positive linear maps between von Neumann algebras are then studied, and applied to solve a positivity problem on the infinite Fermi lattice. Lastly, these results are used to define fermionic detailed balance (which includes the definition for the usual tensor product as a particular case) in general $C^*$-systems with gradation of type $mathbb Z_2$, by viewing such a system as part of a compound system and making use of a diagonal state.