Do you want to publish a course? Click here

Higher order Painleve equations of type $A^{(1)}_l$

188   0   0.0 ( 0 )
 Added by Yasuhiko Yamada
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

A series of systems of nonlinear equations with affine Weyl group symmetry of type $A^{(1)}_l$ is studied. This series gives a generalization of Painleve equations $P_{IV}$ and $P_{V}$ to higher orders.



rate research

Read More

128 - Yasuhiko Yamada 1998
Explicit determinant formulas are presented for the $tau$ functions of the generalized Painleve equations of type $A$. This result allows an interpretation of the $tau$-functions as the Plucker coordinates of the universal Grassmann manifold.
Discrete Painleve equations are nonlinear, nonautonomous difference equations of second-order. They have coefficients that are explicit functions of the independent variable $n$ and there are three different types of equations according to whether the coefficient functions are linear, exponential or elliptic functions of $n$. In this paper, we focus on the elliptic type and give a review of the construction of such equations on the $E_8$ lattice. The first such construction was given by Sakai cite{SakaiH2001:MR1882403}. We focus on recent developments giving rise to more examples of elliptic discrete Painleve equations.
223 - B. Feigin , M. Jimbo , T. Miwa 2016
We introduce and study a category $text{Fin}$ of modules of the Borel subalgebra of a quantum affine algebra $U_qmathfrak{g}$, where the commutative algebra of Drinfeld generators $h_{i,r}$, corresponding to Cartan currents, has finitely many characteristic values. This category is a natural extension of the category of finite-dimensional $U_qmathfrak{g}$ modules. In particular, we classify the irreducible objects, discuss their properties, and describe the combinatorics of the q-characters. We study transfer matrices corresponding to modules in $text{Fin}$. Among them we find the Baxter $Q_i$ operators and $T_i$ operators satisfying relations of the form $T_iQ_i=prod_j Q_j+ prod_k Q_k$. We show that these operators are polynomials of the spectral parameter after a suitable normalization. This allows us to prove the Bethe ansatz equations for the zeroes of the eigenvalues of the $Q_i$ operators acting in an arbitrary finite-dimensional representation of $U_qmathfrak{g}$.
71 - Masatoshi Noumi 2016
We investigate the structure of $tau$-functions for the elliptic difference Painleve equation of type $E_8$. Introducing the notion of ORG $tau$-functions for the $E_8$ lattice, we construct some particular solutions which are expressed in terms of elliptic hypergeometric integrals. Also, we discuss how this construction is related to the framework of lattice $tau$-functions associated with the configuration of generic nine points in the projective plane.
We study higher order KdV equations from the GL(2,$mathbb{R}$) $cong$ SO(2,1) Lie group point of view. We find elliptic solutions of higher order KdV equations up to the ninth order. We argue that the main structure of the trigonometric/hyperbolic/elliptic $N$-soliton solutions for higher order KdV equations is the same as that of the original KdV equation. Pointing out that the difference is only the time dependence, we find $N$-soliton solutions of higher order KdV equations can be constructed from those of the original KdV equation by properly replacing the time-dependence. We discuss that there always exist elliptic solutions for all higher order KdV equations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا