Do you want to publish a course? Click here

Poisson limit of an inhomogeneous nearly critical INAR(1) model

72   0   0.0 ( 0 )
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

An inhomogeneous first--order integer--valued autoregressive (INAR(1)) process is investigated, where the autoregressive type coefficient slowly converges to one. It is shown that the process converges weakly to a Poisson or a compound Poisson distribution.



rate research

Read More

In this paper we show that the family P_d of probability distributions on R^d with log-concave densities satisfies a strong continuity condition. In particular, it turns out that weak convergence within this family entails (i) convergence in total variation distance, (ii) convergence of arbitrary moments, and (iii) pointwise convergence of Laplace transforms. Hence the nonparametric model P_d has similar properties as parametric models such as, for instance, the family of all d-variate Gaussian distributions.
72 - Bo Li , Huiming Zhang , Jiao He 2018
This paper introduces some new characterizations of COM-Poisson random variables. First, it extends Moran-Chatterji characterization and generalizes Rao-Rubin characterization of Poisson distribution to COM-Poisson distribution. Then, it defines the COM-type discrete r.v. ${X_ u }$ of the discrete random variable $X$. The probability mass function of ${X_ u }$ has a link to the Renyi entropy and Tsallis entropy of order $ u $ of $X$. And then we can get the characterization of Stam inequality for COM-type discrete version Fisher information. By using the recurrence formula, the property that COM-Poisson random variables ($ u e 1$) is not closed under addition are obtained. Finally, under the property of not closed under addition of COM-Poisson random variables, a new characterization of Poisson distribution is found.
In this paper we obtain the limit distribution for partial sums with a random number of terms following a class of mixed Poisson distributions. The resulting weak limit is a mixing between a normal distribution and an exponential family, which we call by normal exponential family (NEF) laws. A new stability concept is introduced and a relationship between {alpha}-stable distributions and NEF laws is established. We propose estimation of the parameters of the NEF models through the method of moments and also by the maximum likelihood method, which is performed via an Expectation-Maximization algorithm. Monte Carlo simulation studies are addressed to check the performance of the proposed estimators and an empirical illustration on financial market is presented.
181 - Shui Feng , Fuqing Gao 2009
The two-parameter Poisson-Dirichlet distribution is the law of a sequence of decreasing nonnegative random variables with total sum one. It can be constructed from stable and Gamma subordinators with the two-parameters, $alpha$ and $theta$, corresponding to the stable component and Gamma component respectively. The moderate deviation principles are established for the two-parameter Poisson-Dirichlet distribution and the corresponding homozygosity when $theta$ approaches infinity, and the large deviation principle is established for the two-parameter Poisson-Dirichlet distribution when both $alpha$ and $theta$ approach zero.
178 - Xinjia Chen 2013
We propose new generalized multivariate hypergeometric distributions, which extremely resemble the classical multivariate hypergeometric distributions. The proposed distributions are derived based on an urn model approach. In contrast to existing methods, this approach does not involve hypergeometric series.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا