Do you want to publish a course? Click here

Convergence and inference for mixed Poisson random sums

167   0   0.0 ( 0 )
 Added by Roger Silva Ph.d
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we obtain the limit distribution for partial sums with a random number of terms following a class of mixed Poisson distributions. The resulting weak limit is a mixing between a normal distribution and an exponential family, which we call by normal exponential family (NEF) laws. A new stability concept is introduced and a relationship between {alpha}-stable distributions and NEF laws is established. We propose estimation of the parameters of the NEF models through the method of moments and also by the maximum likelihood method, which is performed via an Expectation-Maximization algorithm. Monte Carlo simulation studies are addressed to check the performance of the proposed estimators and an empirical illustration on financial market is presented.



rate research

Read More

72 - Bo Li , Huiming Zhang , Jiao He 2018
This paper introduces some new characterizations of COM-Poisson random variables. First, it extends Moran-Chatterji characterization and generalizes Rao-Rubin characterization of Poisson distribution to COM-Poisson distribution. Then, it defines the COM-type discrete r.v. ${X_ u }$ of the discrete random variable $X$. The probability mass function of ${X_ u }$ has a link to the Renyi entropy and Tsallis entropy of order $ u $ of $X$. And then we can get the characterization of Stam inequality for COM-type discrete version Fisher information. By using the recurrence formula, the property that COM-Poisson random variables ($ u e 1$) is not closed under addition are obtained. Finally, under the property of not closed under addition of COM-Poisson random variables, a new characterization of Poisson distribution is found.
Let {(X_i,Y_i)}_{i=1}^n be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramer type moderate deviation theorem for the general self-normalized sum sum_{i=1}^n X_i/(sum_{i=1}^n Y_i^2)^{1/2}, which unifies and extends the classical Cramer (1938) theorem and the self-normalized Cramer type moderate deviation theorems by Jing, Shao and Wang (2003) as well as the further refined version by Wang (2011). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cramer type moderate deviation theorems for one-dependent random variables, geometrically beta-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cramer type moderate deviation theorems for self-normalized winsorized mean.
182 - Shui Feng , Fuqing Gao 2009
The two-parameter Poisson-Dirichlet distribution is the law of a sequence of decreasing nonnegative random variables with total sum one. It can be constructed from stable and Gamma subordinators with the two-parameters, $alpha$ and $theta$, corresponding to the stable component and Gamma component respectively. The moderate deviation principles are established for the two-parameter Poisson-Dirichlet distribution and the corresponding homozygosity when $theta$ approaches infinity, and the large deviation principle is established for the two-parameter Poisson-Dirichlet distribution when both $alpha$ and $theta$ approach zero.
104 - Debraj Das 2020
In this article, we are interested in the normal approximation of the self-normalized random vector $Big(frac{sum_{i=1}^{n}X_{i1}}{sqrt{sum_{i=1}^{n}X_{i1}^2}},dots,frac{sum_{i=1}^{n}X_{ip}}{sqrt{sum_{i=1}^{n}X_{ip}^2}}Big)$ in $mathcal{R}^p$ uniformly over the class of hyper-rectangles $mathcal{A}^{re}={prod_{j=1}^{p}[a_j,b_j]capmathcal{R}:-inftyleq a_jleq b_jleq infty, j=1,ldots,p}$, where $X_1,dots,X_n$ are non-degenerate independent $p-$dimensional random vectors with each having independent and identically distributed (iid) components. We investigate the optimal cut-off rate of $log p$ in the uniform central limit theorem (UCLT) under variety of moment conditions. When $X_{ij}$s have $(2+delta)$th absolute moment for some $0< deltaleq 1$, the optimal rate of $log p$ is $obig(n^{delta/(2+delta)}big)$. When $X_{ij}$s are independent and identically distributed (iid) across $(i,j)$, even $(2+delta)$th absolute moment of $X_{11}$ is not needed. Only under the condition that $X_{11}$ is in the domain of attraction of the normal distribution, the growth rate of $log p$ can be made to be $o(eta_n)$ for some $eta_nrightarrow 0$ as $nrightarrow infty$. We also establish that the rate of $log p$ can be pushed to $log p =o(n^{1/2})$ if we assume the existence of fourth moment of $X_{ij}$s. By an example, it is shown however that the rate of growth of $log p$ can not further be improved from $n^{1/2}$ as a power of $n$. As an application, we found respecti
106 - Nikita Zhivotovskiy 2021
We consider the deviation inequalities for the sums of independent $d$ by $d$ random matrices, as well as rank one random tensors. Our focus is on the non-isotropic case and the bounds that do not depend explicitly on the dimension $d$, but rather on the effective rank. In a rather elementary and unified way, we show the following results: 1) A deviation bound for the sums of independent positive-semi-definite matrices of any rank. This result generalizes the dimension-free bound of Koltchinskii and Lounici [Bernoulli, 23(1): 110-133, 2017] on the sample covariance matrix in the sub-Gaussian case. 2) Dimension-free bounds for the operator norm of the sums of random tensors of rank one formed either by sub-Gaussian or log-concave random vectors. This extends the result of Guedon and Rudelson [Adv. in Math., 208: 798-823, 2007]. 3) A non-isotropic version of the result of Alesker [Geom. Asp. of Funct. Anal., 77: 1--4, 1995] on the concentration of the norm of sub-exponential random vectors. 4) A dimension-free lower tail bound for sums of positive semi-definite matrices with heavy-tailed entries, sharpening the bound of Oliveira [Prob. Th. and Rel. Fields, 166: 1175-1194, 2016]. Our approach is based on the duality formula between entropy and moment generating functions. In contrast to the known proofs of dimension-free bounds, we avoid Talagrands majorizing measure theorem, as well as generic chaining bounds for empirical processes. Some of our tools were pioneered by O. Catoni and co-authors in the context of robust statistical estimation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا