Do you want to publish a course? Click here

The minimum rank problem over the finite field of order 2: minimum rank 3

69   0   0.0 ( 0 )
 Added by Jason Grout
 Publication date 2006
  fields
and research's language is English
 Authors Wayne Barrett




Ask ChatGPT about the research

Our main result is a sharp bound for the number of vertices in a minimal forbidden subgraph for the graphs having minimum rank at most 3 over the finite field of order 2. We also list all 62 such minimal forbidden subgraphs. We conclude by exploring how some of these results over the finite field of order 2 extend to arbitrary fields and demonstrate that at least one third of the 62 are minimal forbidden subgraphs over an arbitrary field for the class of graphs having minimum rank at most 3 in that field.



rate research

Read More

A emph{sign pattern (matrix)} is a matrix whose entries are from the set ${+, -, 0}$. The emph{minimum rank} (respectively, emph{rational minimum rank}) of a sign pattern matrix $cal A$ is the minimum of the ranks of the real (respectively, rational) matrices whose entries have signs equal to the corresponding entries of $cal A$. A sign pattern $cal A$ is said to be emph{condensed} if $cal A$ has no zero row or column and no two rows or columns are identical or negatives of each other. In this paper, a new direct connection between condensed $m times n $ sign patterns with minimum rank $r$ and $m$ point--$n$ hyperplane configurations in ${mathbb R}^{r-1}$ is established. In particular, condensed sign patterns with minimum rank 3 are closed related to point--line configurations on the plane. It is proved that for any sign pattern $cal A$ with minimum rank $rgeq 3$, if the number of zero entries on each column of $cal A$ is at most $r-1$, then the rational minimum rank of $cal A$ is also $r$. Furthermore, we construct the smallest known sign pattern whose minimum rank is 3 but whose rational minimum rank is greater than 3.
The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity / minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive semidefinite zero forcing number Z_+(G) is introduced, and shown to be equal to |G|-OS(G), where OS(G) is the recently defined ordered set number that is a lower bound for minimum positive semidefinite rank. The positive semidefinite zero forcing number is applied to the computation of positive semidefinite minimum rank of certain graphs. An example of a graph for which the real positive symmetric semidefinite minimum rank is greater than the complex Hermitian positive semidefinite minimum rank is presented.
A sign pattern matrix is a matrix whose entries are from the set ${+,-,0}$. If $A$ is an $mtimes n$ sign pattern matrix, the qualitative class of $A$, denoted $Q(A)$, is the set of all real $mtimes n$ matrices $B=[b_{i,j}]$ with $b_{i,j}$ positive (respectively, negative, zero) if $a_{i,j}$ is + (respectively, $-$, 0). The minimum rank of a sign pattern matrix $A$, denoted $mr(A)$, is the minimum of the ranks of the real matrices in $Q(A)$. Determination of the minimum rank of a sign pattern matrix is a longstanding open problem. For the case that the sign pattern matrix has a 1-separation, we present a formula to compute the minimum rank of a sign pattern matrix using the minimum ranks of certain generalized sign pattern matrices associated with the 1-separation.
Given three nonnegative integers $p,q,r$ and a finite field $F$, how many Hankel matrices $left( x_{i+j}right) _{0leq ileq p, 0leq jleq q}$ over $F$ have rank $leq r$ ? This question is classical, and the answer ($q^{2r}$ when $rleqminleft{ p,qright} $) has been obtained independently by various authors using different tools (Daykin, Elkies, Garcia Armas, Ghorpade and Ram). In this note, we study a refinement of this result: We show that if we fix the first $k$ of the entries $x_{0},x_{1},ldots,x_{k-1}$ for some $kleq rleqminleft{ p,qright} $, then the number of ways to choose the remaining $p+q-k+1$ entries $x_{k},x_{k+1},ldots,x_{p+q}$ such that the resulting Hankel matrix $left( x_{i+j}right) _{0leq ileq p, 0leq jleq q}$ has rank $leq r$ is $q^{2r-k}$. This is exactly the answer that one would expect if the first $k$ entries had no effect on the rank, but of course the situation is not this simple. The refined result generalizes (and provides an alternative proof of) a result by Anzis, Chen, Gao, Kim, Li and Patrias on evaluations of Jacobi-Trudi determinants over finite fields.
In Martin Gardners October, 1976 Mathematical Games column in Scientific American, he posed the following problem: What is the smallest number of [queens] you can put on a board of side n such that no [queen] can be added without creating three in a row, a column, or a diagonal? We use the Combinatorial Nullstellensatz to prove that this number is at least n, except in the case when n is congruent to 3 modulo 4, in which case one less may suffice. A second, more elementary proof is also offered in the case that n is even.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا