Do you want to publish a course? Click here

Harnack Inequalities for Yamabe Type Equations

375   0   0.0 ( 0 )
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We give some a priori estimates of type sup*inf for Yamabe and prescribed scalar curvature type equations on Riemannian manifolds of dimension >2. The product sup*inf is caracteristic of those equations, like the usual Harnack inequalities for non negative harmonic functions. First, we have a lower bound for sup*inf for some classes of PDE on compact manifolds (like prescribed scalar cuvature). We also have an upper bound for the same product but on any Riemannian manifold not necessarily compact. An application of those result is an uniqueness solution for some PDE.



rate research

Read More

257 - Paul W. Y. Lee 2015
We prove matrix and scalar differential Harnack inequalities for linear parabolic equations on Riemannian and Kahler manifolds.
We derive a matrix version of Li & Yau--type estimates for positive solutions of semilinear heat equations on Riemannian manifolds with nonnegative sectional curvatures and parallel Ricci tensor, similarly to what R.~Hamilton did in~cite{hamilton7} for the standard heat equation. We then apply these estimates to obtain some Harnack--type inequalities, which give local bounds on the solutions in terms of the geometric quantities involved.
124 - Chaojun Yang , Fuzhen Zhang 2019
Following the recent work of Jiang and Lin (Linear Algebra Appl. 585 (2020) 45--49), we present more results (bounds) on Harnack type inequalities for matrices in terms of majorization (i.e., in partial products) of eigenvalues and singular values. We discuss and compare the bounds derived through different ways. Jiang and Lins results imply Tungs version of Harnacks inequality (Proc. Amer. Math. Soc. 15 (1964) 375--381); our results %with simpler proofs are stronger and more general than Jiang and Lins. We also show some majorization inequalities concerning Cayley transforms. Some open problems on spectral norm and eigenvalues are proposed.
74 - P.W.Y. Lee 2015
We prove sharp Harnack inequalities for a family of Kolmogorov-Fokker-Planck type hypoelliptic diffusions.
We classify regularity for a class of Lagrangian mean curvature type equations, which includes the potential equation for prescribed Lagrangian mean curvature and those for Lagrangian mean curvature flow self-shrinkers and expanders, translating solitons, and rotating solitons. We first show that convex viscosity solutions are regular provided the Lagrangian angle or phase is $C^2$ and convex in the gradient variable. We next show that for merely Holder continuous phases, convex solutions are regular if they are $C^{1,beta}$ for sufficiently large $beta$. Singular solutions are given to show that each condition is optimal and that the Holder exponent is sharp. Along the way, we generalize the constant rank theorem of Bian and Guan to include arbitrary dependence on the Legendre transform.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا